CONNECTEDNESS OF THE BALMER SPECTRUM OF THE RIGHT BOUNDED DERIVED CATEGORY

HIROKI MATSUI

ABSTRACT. By virtue of Balmer's celebrated theorem, the classification of thick tensor ideals of a tensor triangulated category \mathcal{T} is equivalent to the topological structure of its Balmer spectrum $\operatorname{Spc} \mathcal{T}$. Motivated by this theorem, we discuss connectedness, irreducibility, and Noetherianity of the Balmer spectrum of a right bounded derived category of finitely generated modules over a commutative ring.

1. INTRODUCTION

Tensor triangulated geometry is a theory introduced by Balmer [1] to study tensor triangulated categories by algebro-geometric methods. Let $(\mathcal{T}, \otimes, \mathbf{1})$ be an essentially small tensor triangulated category (i.e., a triangulated category \mathcal{T} equipped with a symmetric monoidal tensor product \otimes which is compatible with the triangulated structure). Then Balmer defined a topological space $\operatorname{Spc} \mathcal{T}$ which we call the Balmer spectrum of \mathcal{T} . A celebrated theorem due to Balmer [1] states that the radical thick tensor ideals of \mathcal{T} are classified using the geometry of $\operatorname{Spc} \mathcal{T}$:

Theorem 1.1 (Balmer). There is an order-preserving one-to-one correspondence

{radical thick tensor ideals of
$$\mathcal{T}$$
} $\stackrel{f}{\underset{q}{\longleftarrow}}$ {Thomason subsets of Spc \mathcal{T} },

where f and g are given by $f(\mathcal{X}) := \mathsf{BSupp} \mathcal{X} := \bigcup_{X \in \mathcal{X}} \mathsf{BSupp} X$ and $g(W) := \mathsf{BSupp}^{-1}(W) := \{X \in \mathcal{T} \mid \mathsf{BSupp} X \subseteq W\}$, respectively.

From this result, if we want to classify the radical thick tensor ideals of a given tensor triangulated category \mathcal{T} , we have only to understand the topological space $\operatorname{Spc} \mathcal{T}$. Therefore, it is crucial to discuss topological properties of the Balmer spectrum.

In this paper, we consider the right bounded derived category $D^{-}(\text{mod } R)$ of a commutative Noetherian ring R. This triangulated category is a tensor triangulated category with respect to derived tensor product, and we can consider its Balmer spectrum Spc $D^{-}(\text{mod } R)$. The main results of this paper are the following two theorems:

Date: December 21, 2018.

²⁰¹⁰ Mathematics Subject Classification. 13D09, 19D23.

Key words and phrases. Balmer spectrum, prime thick tensor ideal, derived category, Noetherian space, connected space.

The author is supported by Grant-in-Aid for JSPS Fellows 16J01067.

HIROKI MATSUI

Theorem 1.2 (Theorem 3.1). If the Balmer spectrum $\text{Spc} D^{-}(\text{mod } R)$ is a Noetherian topological space, then the Zariski spectrum Spec R is a finite set.

Theorem 1.3 (Corollary 3.12). The Balmer spectrum $\text{Spc } D^-(\text{mod } R)$ is connected if and only if the Zariski spectrum Spc R is so.

Moreover, by using the latter theorem, we give a variant of a well-known result of Carlson [5] in representation theory.

This paper is organized as follows. In Section 2, we recall some basic materials from tensor triangulated geometry and point-set topology. In Section 3, we prove our main theorems and give an application. In Section 4, we discuss realizing a clopen subset of $\operatorname{Spc} D^{-}(\operatorname{mod} R)$ as a Balmer spectrum.

2. Preliminaries

Throughout this paper, let R be a commutative Noetherian ring. For an ideal I of R, we denote by V(I) the ideals of R containing I. We note that V(I) is a closed subset of the Zariski spectrum Spec R and $V(\mathfrak{p})$ is the closure $\{\mathfrak{p}\}$ of \mathfrak{p} in Spec R. Denote by $D^{-}(R)$ (resp. $D^{\mathbf{b}}(R)$) the derived category of complexes M of finitely generated R-modules with $H^{i}(M) = 0$ for all $i \gg 0$ (resp. $|i| \gg 0$). Then $D^{-}(R)$ is an essentially small tensor triangulated category via derived tensor product $\otimes_{R}^{\mathbf{L}}$ with unit R.

First we will recall the definitions of a thick tensor ideal, a radical thick tensor ideal, and a prime thick tensor ideal.

Definition 2.1. Let \mathcal{T} be an essentially small tensor triangulated category.

- (1) A subcategory \mathcal{X} of \mathcal{T} is called a *thick tensor ideal* of \mathcal{T} if it is a thick subcategory of \mathcal{T} and for any $M \in \mathcal{T}$ and $N \in \mathcal{X}$, the tensor product $M \otimes N$ belongs to \mathcal{X} .
- (2) For a thick tensor ideal \mathcal{X} of \mathcal{T} , we denote by $\sqrt{\mathcal{X}}$ the *radical* of \mathcal{X} , that is, the subcategory of \mathcal{T} consisting of objects M such that the *n*-fold tensor product $M \otimes M \otimes \cdots \otimes M$ belongs to \mathcal{X} for some integer $n \geq 1$.
- (3) A thick tensor ideal \mathcal{X} of \mathcal{T} is called *radical* if $\sqrt{\mathcal{X}} = \mathcal{X}$.
- (4) A proper thick tensor ideal \mathcal{P} of \mathcal{T} is called *prime* if $M \otimes N \in \mathcal{P}$ implies either $M \in \mathcal{P}$ or $N \in \mathcal{P}$. The set of prime thick tensor ideals of \mathcal{T} is denoted by $\operatorname{Spc} \mathcal{T}$ and we call it the *Balmer spectrum* of \mathcal{T} .

For a thick tensor ideal \mathcal{X} , its radical $\sqrt{\mathcal{X}}$ is a thick tensor ideal. Indeed, by [1, Lemma 4.2], it is equal to the intersection of all prime thick tensor ideals containing \mathcal{X} .

Example 2.2. For a complex $M \in D^{-}(R)$, define the support of M by

Supp
$$M := \{ \mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \not\cong 0 \text{ in } \mathsf{D}^{-}(R_{\mathfrak{p}}) \}$$
$$= \bigcup_{n \in \mathbb{Z}} \operatorname{Supp} \mathsf{H}^{n}(M).$$

Moreover, for a class \mathcal{X} of objects of $D^{-}(R)$, denote by $\operatorname{Supp} \mathcal{X} := \bigcup_{M \in \mathcal{X}} \operatorname{Supp} M$. Then, for a subset W of $\operatorname{Spec} R$,

$$\operatorname{Supp}^{-1} W := \{ M \in \mathsf{D}^{-}(R) \mid \operatorname{Supp} M \subseteq W \}$$

is a thick tensor ideal of $D^{-}(R)$. Furthermore, if we take $W := \{ \mathfrak{q} \in \operatorname{Spec} R \mid \mathfrak{q} \not\subseteq \mathfrak{p} \}$ for a fixed \mathfrak{p} , then

$$\mathcal{S}(\mathfrak{p}) := \operatorname{Supp}^{-1} W = \{ M \in \mathsf{D}^{-}(R) \mid M_{\mathfrak{p}} \cong 0 \text{ in } \mathsf{D}^{-}(R_{\mathfrak{p}}) \}$$

is a prime thick tensor ideal of $D^{-}(R)$ by [7, Proposition 3.4].

Balmer [1] defined a topology on $\operatorname{Spc} \mathcal{T}$ as follows.

- **Definition 2.3.** (1) For an object $M \in \mathcal{T}$, the *Balmer support* of M, denoted by $\mathsf{BSupp} M$, is defined as the set of prime thick tensor ideals not containing M. Set $\mathsf{U}(M) := \operatorname{Spc} \mathcal{T} \setminus \mathsf{BSupp} M$.
- (2) Define a topology on Spc \mathcal{T} whose open basis is $\{U(X) \mid X \in \mathcal{T}\}$.

We always consider this topology on the Balmer spectrum. Next, let us recall some notions from point-set topology for later use.

Definition 2.4. Let X be a topological space.

- (1) We say that a subspace of X is a *clopen subset* if it is closed and open in X.
- (2) A subspace W of X is said to be *specialization closed* if for any $x \in W$, $\overline{\{x\}} \subseteq W$ holds.
- (3) A subspace W of X is said to be generalization closed if for any $x \in W$ and $y \in X$, $x \in \overline{\{y\}}$ implies $y \in W$.
- (4) We say that X is connected if it contains no non-trivial clopen subset. For a subspace Y of X, we say that Y is a connected subspace of X if it is a connected space by induced topology. Moreover, a connected component of X is a maximal connected subspace of X.
- (5) We say that X is *irreducible* if it is non-empty and not the union of two proper closed subspaces. For a subspace Y of X, we say that Y is an *irreducible subspace* of X if it is an irreducible space by induced topology. Moreover, an *irreducible component* of X is a maximal irreducible subspace of X, which is automatically closed since the closure of irreducible subspace is also irreducible.
- (6) We say that X is *Noetherian* if every descending chain of closed subspaces stabilizes.
- **Remark 2.5.** (1) A subspace is generalization closed if and only if its complement is specialization closed. In particular, every open subset of X is generalization closed.
- (2) Let $X \supseteq Y \supseteq Z$ be subspaces. If Y is specialization closed in X and Z is specialization closed in Y, then Z is specialization closed in X.
- (3) Let W be a subspace of Spec R. Then W is specialization closed (resp. generalization closed) in Spec R if and only if

$$\mathfrak{p} \in W, \ \mathfrak{p} \subseteq \mathfrak{q} \Longrightarrow \mathfrak{q} \in W$$

(resp.
$$\mathfrak{q} \in W, \ \mathfrak{p} \subseteq \mathfrak{q} \Longrightarrow \mathfrak{p} \in W$$
).

(4) [1, Proposition 2.9] Let \mathcal{T} be an essentially small tensor triangulated category and W a subspace of Spc \mathcal{T} . Then W is specialization closed (resp. generalization closed)

in $\operatorname{Spc} \mathcal{T}$ if and only if

(

$$\mathcal{P} \in W, \ \mathcal{P} \supseteq \mathcal{Q} \Longrightarrow \mathcal{Q} \in W$$

resp. $\mathcal{Q} \in W, \ \mathcal{P} \supseteq \mathcal{Q} \Longrightarrow \mathcal{P} \in W$.

Lemma 2.6. Let X be a topological space. Then every connected component of X is both specialization closed and generalization closed.

Proof. Fix a connected component O of X. For $x \in O$, $\overline{\{x\}}$ is irreducible and in particular connected. Since $O \cap \overline{\{x\}}$ is non-empty, $O \cup \overline{\{x\}}$ is connected. Thus, $O \cup \overline{\{x\}}$ must be equal to O, and hence $\overline{\{x\}} \subseteq O$. This shows that O is specialization closed in X.

For $x \notin O$, assume that there exists $y \in \overline{\{x\}}$ with $y \in O$. Then $\overline{\{x\}} \cap O$ is non-empty as it contains y. Therefore, the same argument as above shows that $\overline{\{x\}} \subseteq O$. This gives a contradiction to $x \notin O$. Thus, $X \setminus O$ is specialization closed in X and hence O is generalization closed in X.

3. Main theorems

In this section, we discuss Noetherianity, connectedness, and irreducibility of the Balmer spectrum $\operatorname{Spc} D^{-}(R)$.

3.1. Noetherianity. Besides, we show the following theorem which gives a sufficient condition for Noetherianity of the Balmer spectrum $\text{Spc } D^-(R)$.

Theorem 3.1. If the Balmer spectrum $\operatorname{Spc} D^{-}(R)$ is a Noetherian topological space, then $\operatorname{Spec} R$ is a finite set (i.e., semi-local ring with Krull dimension at most 1).

Before proving this, we give the following easy lemma.

Lemma 3.2. If Spec R has infinitely many prime ideals, then there is a countable antichain of prime ideals.

Proof. If R has infinitely many maximal ideals, then we can take such a set as a countable set of pairwise non-equal maximal ideals.

Assume that R has only finitely many maximal ideals. Then R has finite Krull dimension. Since R has infinitely many prime ideals, there is a non-negative integer n such that the set $\{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{ht} \mathfrak{p} = n\}$ has infinitely many elements. Thus, a countable subset of this set has the desired property.

For a complex $M \in D^{-}(R)$, denote by $\langle M \rangle$ the smallest thick tensor ideal of $D^{-}(R)$ containing M.

Proof of Theorem 3.1. Assume that $\operatorname{Spc} \mathsf{D}^{-}(R)$ is Noetherian. Then for any chain of the form $\operatorname{\mathsf{BSupp}} M_1 \supseteq \operatorname{\mathsf{BSupp}} M_2 \supseteq \operatorname{\mathsf{BSupp}} M_3 \cdots$ with $M_i \in \operatorname{\mathsf{D}}^{-}(R)$ stabilizes. Thus, by Theorem 1.1, every descending chain $\sqrt{\langle M_1 \rangle} \supseteq \sqrt{\langle M_2 \rangle} \supseteq \sqrt{\langle M_3 \rangle} \supseteq \cdots$ stabilizes.

Assume furthermore that R has infinitely many prime ideals. From the previous lemma, we can take a countable antichain $\{\mathfrak{p}_n\}_{n\geq 1}$ of prime ideals. Set $M_n := \bigoplus_{i\geq n} R/\mathfrak{p}_i[i]$ to be the complex

$$M_n := (\cdots \xrightarrow{0} R/\mathfrak{p}_{n+2} \xrightarrow{0} R/\mathfrak{p}_{n+1} \xrightarrow{0} R/\mathfrak{p}_n \to 0 \cdots).$$

Here, R/\mathfrak{p}_i fit into the (-i)-th component. Then M_n belongs to $\mathsf{D}^-(R)$, and M_{n+1} is a direct summand of M_n for each integer $n \geq 1$. Therefore, we have a descending chain $\sqrt{\langle M_1 \rangle} \supseteq \sqrt{\langle M_2 \rangle} \supseteq \sqrt{\langle M_3 \rangle} \supseteq \cdots$ of radical thick tensor ideals. From the above argument, we get an equality $\sqrt{\langle M_n \rangle} = \sqrt{\langle M_{n+1} \rangle}$ for some integer $n \geq 1$. Taking Supp, we obtain

$$\bigcup_{i\geq n}\mathsf{V}(\mathfrak{p}_i)=\mathsf{Supp}\,\sqrt{\langle M_n\rangle}=\mathsf{Supp}\,\sqrt{\langle M_{n+1}\rangle}=\bigcup_{i\geq n+1}\mathsf{V}(\mathfrak{p}_i).$$

Hence, there is an integer $m \ge n+1$ such that $\mathfrak{p}_m \subseteq \mathfrak{p}_n$. This gives a contradiction.

Remark 3.3. If R is Artinian, then by [7, Theorem 6.5], $\operatorname{Spc} D^-(R)$ is homeomorphic to $\operatorname{Spec} R$. In particular, $\operatorname{Spc} D^-(R)$ is a Noetherian topological space.

3.2. Connectedness. In this subsection, we mainly discuss connectedness of the Balmer spectrum $\operatorname{Spc} D^{-}(R)$. We use the following pair of maps defined in [7] to compare two spectra:

$$\mathfrak{s} : \operatorname{Spc} \mathsf{D}^{-}(R) \rightleftharpoons \operatorname{Spec} R : \mathcal{S}.$$

Here the map \mathcal{S} was defined in Example 2.2 and $\mathfrak{s}(\mathcal{P})$ is the unique maximal element of the set of ideals I of R with $R/I \notin \mathcal{P}$, see [7, Proposition 3.7]. Let me list some basic properties of these maps in the following proposition.

Proposition 3.4. [7, Theorem 3.9, Corollary 3.10, Theorem 4.5]

- (1) Both maps \mathfrak{s} and \mathcal{S} are order-reversing.
- (2) \mathfrak{s} is continuous.
- (3) $\mathfrak{s} \cdot \mathcal{S} = 1$. In particular, \mathfrak{s} is surjective and \mathcal{S} is injective.
- (4) For a prime thick tensor ideal \mathcal{P} of $\mathsf{D}^{-}(R)$, one has

$$\mathcal{S}\mathfrak{s}(\mathcal{P}) = \mathsf{Supp}^{-1}\,\mathsf{Supp}(\mathcal{P})\supseteq\mathcal{P}.$$

(5) For a prime thick tensor ideal \mathcal{P} of $\mathsf{D}^-(R)$, one has

$$\operatorname{Supp} \mathcal{P} = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \not\subseteq \mathfrak{s}(\mathcal{P}) \}.$$

Remark 3.5. As it has been shown in [7, Theorem 4.7], \mathcal{S} is not continuous in general.

The following theorem is the main result of this subsection.

Theorem 3.6. Let $C \in D^{b}(R)$ be a bounded complex.

(1) There is a one-to-one correspondence

 $\left\{ connected \ components \ of \ \mathsf{BSupp} \ C \right\} \xrightarrow[\mathfrak{s}^{-1}]{\mathfrak{s}} \left\{ connected \ components \ of \ \mathsf{Supp} \ C \right\}.$

(2) There is a one-to-one correspondence

 $\{irreducible \ components \ of \ \mathsf{BSupp} \ C\} \xrightarrow{\mathfrak{s}}_{\mathfrak{s}^{-1}} \{irreducible \ components \ of \ \mathsf{Supp} \ C\}.$

The proof of this theorem is divided into several lemmata.

Fix a bounded complex $C \in \mathsf{D}^{\mathsf{b}}(R)$. Then by [7, Proposition 2.9], for a thick tensor ideal $\mathcal{X}, C \in \mathcal{X}$ if and only if $\mathsf{Supp} C \subseteq \mathsf{Supp} \mathcal{X}$. By combining this with Proposition 3.4, $\mathcal{P} \in \mathsf{BSupp} C$ if and only if $\mathcal{Ss}(\mathcal{P}) \in \mathsf{BSupp} C$ for a prime thick tensor ideal \mathcal{P} of $\mathsf{D}^-(R)$.

Lemma 3.7. (1) $\mathfrak{s}(\mathsf{BSupp} C) = \mathsf{Supp} C$. (2) $\mathcal{S}(\mathsf{Supp} C) \subseteq \mathsf{BSupp} C$.

Proof. (1) For a prime thick tensor ideal \mathcal{P} in BSupp C, we have the following equivalences:

$$\mathcal{P} \in \mathfrak{s}^{-1}(\operatorname{Supp} C) \Leftrightarrow \mathfrak{s}(\mathcal{P}) \in \operatorname{Supp} C$$

$$\Leftrightarrow \operatorname{Supp} C \not\subseteq \operatorname{Supp} \mathcal{P} = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \not\subseteq \mathfrak{s}(\mathcal{P}) \}$$

$$\Leftrightarrow C \notin \mathcal{P}$$

$$\Leftrightarrow \mathcal{P} \in \operatorname{BSupp} C.$$

Here, the first and the last equivalences are clear. Since $\{\mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \not\subseteq \mathfrak{s}(\mathcal{P})\}$ is the largest specialization closed subset of $\operatorname{Spec} R$ not containing $\mathfrak{s}(\mathcal{P})$, the second equivalence holds. The third one follows from the above discussion. As a result, $\operatorname{Supp} C = \mathfrak{s}(\mathfrak{s}^{-1}(\operatorname{Supp} C)) = \mathfrak{s}(\operatorname{BSupp} C)$ since \mathfrak{s} is surjective.

(2) For an element $\mathfrak{p} \in \operatorname{Supp} C$, $\operatorname{Supp} C \not\subseteq \operatorname{Supp} S(\mathfrak{p}) = \{\mathfrak{q} \in \operatorname{Spec} R \mid \mathfrak{q} \not\subseteq \mathfrak{sS}(\mathfrak{p}) = \mathfrak{p}\}$ shows $C \notin S(\mathfrak{p})$. Thus, we obtain $S(\mathfrak{p}) \in \operatorname{BSupp} C$.

From this lemma, the maps

$$\mathfrak{s}: \operatorname{Spc} \mathsf{D}^{-}(R) \rightleftarrows \operatorname{Spec} R: \mathcal{S}$$

restrict to maps

$$\mathfrak{s}:\mathsf{BSupp}\,C
ightleftarrow\mathsf{Supp}\,C:\mathcal{S}_{+}$$

Lemma 3.8. The above pair of maps induce a one-to-one correspondence

 \mathfrak{s} : Max BSupp $C \rightleftharpoons$ Min Supp $C : \mathcal{S}$.

Here, Max BSupp C (resp. Min Supp C) is the set of maximal (resp. minimal) elements of BSupp C (resp. Supp C) with respect to the inclusion relation.

If we take C = R, this lemma recovers [7, Theorem 4.12].

Proof. Because $S : \operatorname{Spec} R \to \operatorname{Spc} D^{-}(R)$ is injective, we have only to check that the map $S : \operatorname{Min} \operatorname{Supp} C \to \operatorname{Max} \operatorname{BSupp} C$ is well-defined and surjective. Let \mathfrak{p} be a minimal element of $\operatorname{Supp} C$. We show that $S(\mathfrak{p})$ is a maximal element of $\operatorname{BSupp} C$. Take a prime thick tensor ideal \mathcal{P} in $\operatorname{BSupp} C$ containing $S(\mathfrak{p})$. Then $\mathfrak{s}(\mathcal{P}) \subseteq \mathfrak{sS}(\mathfrak{p}) = \mathfrak{p}$ by Proposition 3.4. Since both \mathfrak{p} and $\mathfrak{s}(\mathcal{P})$ belong to $\operatorname{Supp} C$ by Lemma 3.7, the minimality of \mathfrak{p} shows the equality $\mathfrak{p} = \mathfrak{s}(\mathcal{P})$. Hence, we have

$$\mathsf{Supp}\,\mathcal{P} = \{\mathfrak{q}\in\mathsf{Spec}\,R\mid\mathfrak{q}\nsubseteq\mathfrak{s}(\mathcal{P}) = \mathfrak{p} = \mathfrak{s}(\mathcal{S}(\mathfrak{p}))\} = \mathsf{Supp}\,\mathcal{S}(\mathfrak{p}).$$

This shows that $\mathcal{P} \subseteq \mathcal{S}(\mathfrak{p})$ and thus $\mathcal{S}(\mathfrak{p})$ is a maximal element in $\mathsf{BSupp} C$. For this reason, the map \mathcal{S} : Min $\mathsf{Supp} C \to \mathsf{Max} \mathsf{BSupp} C$ is well-defined.

Next we check the surjectivity of the map S: Min Supp $C \to Max BSupp C$. Let \mathcal{P} be a maximal element of BSupp C. It follows from Lemma 3.7 that $S\mathfrak{s}(\mathcal{P})$ is also an element in BSupp C. On the other hand, $S\mathfrak{s}(\mathcal{P})$ contains \mathcal{P} by Proposition 3.4(3). Thus, we get $\mathcal{P} = S\mathfrak{s}(\mathcal{P})$ from the maximality of \mathcal{P} . Let \mathfrak{p} be an element of Supp C with $\mathfrak{p} \subseteq \mathfrak{s}(\mathcal{P})$. Then $\mathcal{P} = S\mathfrak{s}(\mathcal{P}) \subseteq S(\mathfrak{p})$. Since \mathcal{P} is maximal in BSupp C, one has $\mathcal{P} = S(\mathfrak{p})$. Hence, $\mathfrak{p} = \mathfrak{sS}(\mathfrak{p}) = \mathfrak{s}(\mathcal{P})$ and this shows that $\mathfrak{s}(\mathcal{P})$ is a minimal element of Supp C. As a result, one has $S(\mathfrak{p}) = S\mathfrak{s}(\mathcal{P}) = \mathcal{P}$ and this shows that S: Min Supp $C \to Max BSupp C$ is surjective.

The following result gives an easier way to check whether a given subspace is clopen.

Lemma 3.9. Let X be either Supp C or BSupp C and W a subset of X. If W is both specialization closed and generalization closed, then W is clopen.

Proof. We show this statement only for $X = \mathsf{BSupp} C$ because a similar argument works also for $X = \mathsf{Supp} C$. By symmetry, we need to check that W is closed.

Claim. $W = \bigcup_{\mathcal{P} \in \mathsf{Max} \mathsf{BSupp} C \cap W} \overline{\{\mathcal{P}\}}.$

Proof of claim. Since W is specialization closed, $W \supseteq \bigcup_{\mathcal{P} \in \mathsf{Max} \mathsf{BSupp} C \cap W} \overline{\{\mathcal{P}\}}$ holds. Let \mathcal{P} be an element of W. Take a minimal element \mathfrak{p} in $\mathsf{Supp} C$ contained in $\mathfrak{s}(\mathcal{P})$. We can take such a \mathfrak{p} since $\mathsf{Supp} C$ is a closed subset of $\mathsf{Spec} R$. Then

$$\mathcal{P}\subseteq\mathcal{Ss}(\mathcal{P})\subseteq\mathcal{S}(\mathfrak{p}).$$

By Lemma 3.8, $S(\mathfrak{p})$ is a maximal element of $\mathsf{BSupp} C$. Moreover, $S(\mathfrak{p})$ belongs to W since W is generalization closed and $\mathcal{P} \in W$. These show that $S(\mathfrak{p})$ is a maximal element of $\mathsf{BSupp} C$. Accordingly, we obtain $\mathcal{P} \in \overline{\{S(\mathfrak{p})\}}$ with $S(\mathfrak{p}) \in \mathsf{Max} \mathsf{BSupp} C$ and hence the converse inclusion holds true. \Box

Note that $\operatorname{Supp} C$ is closed and thus contains only finitely many minimal elements. By using the one-to-one correspondence in Lemma 3.8, $\operatorname{Max} \operatorname{BSupp} C$ is also a finite set. Consequently, W is a finite union of closed subsets, and hence is closed.

Lemma 3.10. Let U be a clopen subset of $\mathsf{BSupp} C$. Then

(1) $\mathfrak{p} \in \mathfrak{s}(U)$ if and only if $\mathcal{S}(\mathfrak{p}) \in U$, and (2) $\mathfrak{s}(U)$ is a clopen subset in Supp C.

Proof. (1) The 'if' part is from Proposition 3.4(3). Let \mathfrak{p} be an element of $\mathfrak{s}(U) \subseteq \mathfrak{s}(\mathsf{BSupp} C) = \mathsf{Supp} C$. Then there is a prime thick tensor ideal $\mathcal{P} \in U$ such that $\mathfrak{s}(\mathcal{P}) = \mathfrak{p}$. Then $\mathcal{S}(\mathfrak{p})$ belongs to U because $\mathcal{P} \subseteq \mathcal{Ss}(\mathcal{P}) = \mathcal{S}(\mathfrak{p})$ and U is generalization closed in $\mathsf{BSupp} C$.

(2) By Lemma 3.9, we have only to check that $\mathfrak{s}(U)$ and $\operatorname{Supp} C \setminus \mathfrak{s}(U)$ are specialization closed in $\operatorname{Supp} C$.

HIROKI MATSUI

Take $\mathfrak{p} \in \mathfrak{s}(U)$ and $\mathfrak{q} \in V(\mathfrak{p})$. Then $\mathcal{S}(\mathfrak{q}) \subseteq \mathcal{S}(\mathfrak{p})$. From (1), one has $\mathcal{S}(\mathfrak{p}) \in U$. Since U is specialization closed, we get $\mathcal{S}(\mathfrak{q}) \in U$. Thus, $\mathfrak{q} = \mathfrak{s}\mathcal{S}(\mathfrak{q})$ belongs to $\mathfrak{s}(U)$. This shows that $\mathfrak{s}(U)$ is specialization closed in Supp C.

Take $\mathfrak{p} \in \operatorname{Supp} C \setminus \mathfrak{s}(U)$ and $\mathfrak{q} \in V(\mathfrak{p})$. Then $\mathcal{S}(\mathfrak{q}) \subseteq \mathcal{S}(\mathfrak{p})$. From (1), one has $\mathcal{S}(\mathfrak{p}) \notin U$. Assume that $\mathcal{S}(\mathfrak{q})$ belongs to U. Since U is generalization closed, $\mathcal{S}(\mathfrak{p})$ belongs to U, a contradiction. Thus, $\mathcal{S}(\mathfrak{q}) \notin U$ and hence $\mathfrak{q} \notin \mathfrak{s}(U)$ by (1). This shows that $\operatorname{Supp} C \setminus \mathfrak{s}(U)$ is specialization closed in $\operatorname{Supp} C$.

Lemma 3.11. Let U be a clopen subset of $\mathsf{BSupp} C$. Then $\mathfrak{s}^{-1}\mathfrak{s}(U) = U$.

Proof. The inclusion $U \subseteq \mathfrak{s}^{-1}\mathfrak{s}(U)$ is trivial. For a prime thick tensor ideal $\mathcal{P} \in \mathfrak{s}^{-1}\mathfrak{s}(U)$, one has $\mathfrak{s}(\mathcal{P}) \in \mathfrak{s}(U)$. By Lemma 3.10(1), we obtain $\mathcal{S}\mathfrak{s}(\mathcal{P}) \in U$. Since U is specialization closed in BSupp C and $\mathcal{P} \subseteq \mathcal{S}\mathfrak{s}(\mathcal{P})$, we conclude that \mathcal{P} belongs U.

Now, we are ready to prove Theorem 3.6.

(Proof of Theorem 3.6). (1) By Lemma 3.10(2), we obtain a well-defined map

{clopen subsets of $\mathsf{BSupp} C$ } \rightarrow {clopen subsets of $\mathsf{Supp} C$ }, $U \mapsto \mathfrak{s}(U)$.

This map is injective by Lemma 3.11 and surjective since $\mathfrak{s} : \mathsf{BSupp} C \to \mathsf{Supp} C$ is continuous and surjecive. Thus, this map is an order-preserving one-to-one correspondence.

Our topological spaces $\mathsf{BSupp} C$ and $\mathsf{Supp} C$ have only finitely many connected components by Lemma 2.6, Lemma 3.8, and the proof of Lemma 3.9. Thus, connected components are nothing but minimal non-empty clopen subsets. Therefore, the statement (1) follows from the above order-isomorphism.

(2) By [1, Proposition 2.9, Proposition 2.18], every irreducible closed subset of $\mathsf{BSupp} C$ is of the form

$$\{\mathcal{P}\} = \{\mathcal{Q} \in \operatorname{Spc} \mathsf{D}^{-}(R) \mid \mathcal{Q} \subseteq \mathcal{P}\}$$

for a unique prime thick tensor ideal $\mathcal{P} \in \mathsf{BSupp} C$. Since an irreducible component is by definition a maximal irreducible closed subset, every irreducible component of $\mathsf{BSupp} C$ is of the form $\overline{\{\mathcal{P}\}}$ for a unique maximal element \mathcal{P} of $\mathsf{BSupp} C$. Thus, $\mathcal{P} = \mathcal{S}(\mathfrak{p})$ for some minimal element \mathfrak{p} of $\mathsf{Supp} C$ by Lemma 3.8. Similarly, every irreducible component of $\mathsf{Supp} C$ is of the form $\overline{\{\mathfrak{p}\}}$ for a unique minimal element \mathfrak{p} of $\mathsf{Supp} C$. Therefore, there is a maximal element \mathcal{P} of $\mathsf{BSupp} C$ such that $\mathfrak{p} = \mathfrak{s}(\mathcal{P})$ by Lemma 3.8. Altogether, the one-to-one correspondence of Lemma 3.8 gives a one-to-one correspondence what we want.

The following connectedness result is a direct consequence of Theorem 3.6.

Corollary 3.12. For a bounded complex $C \in D^{b}(R)$, BSupp C is connected (resp. irreducible) if and only if Supp C is connected (resp. irreducible). In particular, $Spc D^{-}(R)$ is connected (resp. irreducible) if and only if Spec R is connected (resp. irreducible).

Remark 3.13. A part of this corollary is shown in [7, Corollary 4.13].

As an application of Theorem 3.6, we obtain the following corollary:

Corollary 3.14. Let $C \in D^{b}(R)$ be a bounded complex. If C is indecomposable in $D^{-}(R)$, then $\mathsf{BSupp} C$ is connected.

Proof. By Theorem 3.6, it is enough to show that $\mathsf{Supp} C$ is connected.

Take an ideal I with $\operatorname{Supp} C = V(I)$. It follows from [8, Lemma 2.1] that there exists a bounded complex B such that

- (i) B is quasi-isomorphic to C,
- (ii) Supp $B^i \subseteq V(I)$.

By (ii), we can take an integer n > 0 with $I^n B^i = 0$ for each *i*. Thus we may assume that $\operatorname{\mathsf{Supp}} C = \mathsf{V}(I)$ and $IC^i = 0$ for each *i*.

Consider a decomposition $\operatorname{Supp} C = F_1 \sqcup F_2$ with F_1, F_2 closed. Then there are radical ideals I_1 and I_2 such that $F_i = V(I_i)$ (i = 1, 2), $I_1 + I_2 = R$, and $I_1 \cap I_2 = \sqrt{I}$. Using Chinese remainder theorem, we obtain a direct sum decomposition

$$R/\sqrt{I} \cong R/I_1 \oplus R/I_2$$

Moreover, from the idempotent lifting theorem (see [6, Proposition 21.25]), we obtain the following decomposition

$$R/I \cong R/J_1 \oplus R/J_2.$$

Here, J_1 and J_2 are ideals with $\sqrt{J_i} = I_i$ for i = 1, 2. Tensoring with C, we get the following direct sum decomposition:

$$C \cong C \otimes_R R/I \cong (C \otimes_R R/J_1) \oplus (C \otimes_R R/J_2).$$

Since C is indecomposable, $C \otimes_R R/J_1 \cong C$ or $C \otimes_R R/J_2 \cong C$. If $C \otimes_R R/J_1 \cong C$, then we obtain

$$\mathsf{V}(I) = \mathsf{Supp}\, C = \mathsf{Supp}(C \otimes_R R/J_1) \subseteq \mathsf{V}(J_1)$$

and thus $\operatorname{Supp} C = V(I) = V(I_1) = F_1$. Similarly, if $C \otimes_R R/J_2 \cong C$, then one has $\operatorname{Supp} C = F_2$. Thus, we are done.

This corollary means that the Balmer support of an indecomposable R-module is connected. Such a result has been shown by Carlson [5] for the stable category of finite dimensional representations over a finite group, and more generally, by Balmer [2] for an idempotent complete rigid tensor triangulated category.

4. Realizing a clopen subset as a Balmer spectrum

In this section, we prove that every clopen subset of $\operatorname{Spc} D^-(R)$ is homeomorphic to the Balmer spectrum of the Eilenberg-Moore category of some ring object. Following [3,4], we recall the notion of a ring object and related concepts.

Let $(\mathcal{T}, \otimes, \mathbf{1})$ be a tensor triangulated category. We say that an object $A \in \mathcal{T}$ is a *ring object* of \mathcal{T} if there is a morphisms

$$\begin{split} \mu &: A \otimes A \to A, \\ \eta &: \mathbf{1} \to A \end{split}$$

satisfying the following commutative diagrams:

We say that a ring object A of \mathcal{T} is *commutative* if $\mu \tau = \mu$ holds, where

$$\tau: A \otimes A \to A \otimes A$$

is the swap of factors. We say that a ring object A of \mathcal{T} is *separable* if there is a morphism

$$\sigma: A \to A \otimes A$$

such that $(A \otimes \mu)(\sigma \otimes A) = \sigma\mu = (\mu \otimes A)(A \otimes \sigma)$.

We say that an object $M \in \mathcal{T}$ is a (left) A-module if there is a morphism

$$\lambda: A \otimes M \to M$$

satisfying the following commutative diagrams:

$$\begin{array}{cccc} A \otimes A \otimes M \xrightarrow{A \otimes \lambda} A \otimes M & \mathbf{1} \otimes M \xrightarrow{\eta \otimes M} A \otimes M \\ \mu \otimes M & & & & \downarrow \lambda \\ A \otimes M \xrightarrow{\lambda} M & & & M \end{array}$$

Denote by $\operatorname{\mathsf{Mod}} A$ the category of A-modules.

Let me give the following easy observation.

Lemma 4.1. If R is decomposed into $R = A \times B$ as rings, then A has a unique ring object structure by the natural multiplication $\mu : A \otimes_R^{\mathbf{L}} A \cong A \otimes_R A \cong A$ and the projection $\eta : R \to A$. Moreover, the following holds true.

- (1) A is a commutative separable ring object in $D^{-}(R)$.
- (2) For any complex $M \in D^{-}(R)$, it has an A-module structure if and only if $A \otimes_{R}^{\mathbf{L}} M \cong M$. This is the case, its A-module structure is uniquely determined by underlying complex.
- (3) For A-modules M and N, $M \otimes_R^{\mathbf{L}} N$ is an A-module. Hence $\operatorname{\mathsf{Mod}} A$ is a tensor triangulated category via $\otimes_R^{\mathbf{L}}$ and the forgetful functor $U_A : \operatorname{\mathsf{Mod}} A \to \operatorname{\mathsf{D}}^{\operatorname{\mathsf{-}}}(R)$ preserves tensor products.

Proof. Since A is a projective R-module, the statement (1) means that A is a commutative separable R-algebra in the usual sense and this is clear. Uniqueness of this structure follows from (2).

(2) Let M be an A-module. Consider the following commutative diagram:

In particular, the composition $\mathsf{H}^{i}(\lambda) \circ \mathsf{H}^{i}(\eta \otimes_{R}^{\mathbf{L}} M)$ is an isomorphism for each integer *i*. Since $\eta \otimes_{R}^{\mathbf{L}} M$ is a split epimorphism, $\mathsf{H}^{i}(\eta \otimes_{R}^{\mathbf{L}} M)$ is also a split epimorphism and hence is an isomorphism for each *i*. This shows that $\eta \otimes_{R}^{\mathbf{L}} X$ is a quasi-isomorphism. From the above commutative diagram, λ is also a quasi-isomorphism.

Take an object $M \in D^{-}(R)$ with $A \otimes_{R}^{\mathbf{L}} M \cong M$. Then the following morphism gives an A-module structure to M:

$$A \otimes_R^{\mathbf{L}} M \cong A \otimes_R^{\mathbf{L}} A \otimes_R^{\mathbf{L}} M \xrightarrow{\mu \otimes_R^{\mathbf{L}} M} A \otimes_R^{\mathbf{L}} M \cong M.$$

Moreover, the A-module structure λ is uniquely determined as

$$A \otimes_R^{\mathbf{L}} M \xrightarrow{(\eta \otimes_R^{\mathbf{L}} M)^{-1}} R \otimes_R^{\mathbf{L}} M \xrightarrow{\cong} M.$$

The last statement (3) directly follows from (2).

From (2) in the above lemma, we can define a unique A-module structure for a complex $M \in \mathsf{D}^{-}(R)$ with $A \otimes_{R}^{\mathbf{L}} M \cong M$. For simplicity, we denote this A-module by M_{A} . In addition, for a complex $M \in \mathsf{D}^{-}(R)$, $A \otimes_{R}^{\mathbf{L}} M$ has an A-module structure and hence we can define a triangulated functor

$$F_A: \mathsf{D}^{-}(R) \to \mathsf{Mod}\, A, \ M \mapsto A \otimes^{\mathbf{L}}_{B} M.$$

Corollary 4.2. For any non-empty clopen subset W of $\operatorname{Spc} D^{-}(R)$, there is a commutative separable ring object A of $D^{-}(R)$ such that

$$\varphi_A := {}^{a}F_A : \operatorname{Spc}(\operatorname{\mathsf{Mod}} A) \to \operatorname{Spc} \operatorname{\mathsf{D}}^{\operatorname{\mathsf{-}}}(R), \ \mathcal{P} \mapsto F_A^{-1}(\mathcal{P})$$

gives a homeomorphism onto W.

Proof. By Lemma 3.10, $\mathfrak{s}(W)$ is a clopen subset of Spec *R*. Therefore, by Corollary 3.14, there is a direct sum decomposition $R = A \times B$ of rings with $\mathfrak{s}(W) = \operatorname{Supp} A$. Then Lemma 4.1 shows that *A* has a commutative separable ring object structure. Since U_A preserves tensor products, one can easily check that the forgetful functor $U_A : \operatorname{Mod} A \to D^-(R)$ induces a continuous injective map

$$\psi_A : \mathsf{BSupp} A \to \mathsf{Spc}(\mathsf{Mod} A), \mathcal{P} \mapsto U_A^{-1}(\mathcal{P}),$$

see [1, Proposition 3.6]. Furthermore, the image of φ_A is contained in BSupp A and $\psi_A \varphi_A = 1$ because $F_A U_A \cong 1$. For this reason, we have only to check that the image of φ_A is W.

Let \mathcal{P} be a prime thick tensor ideal of Mod A. By definition,

$$\varphi_A(\mathcal{P}) = \{ X \in \mathsf{D}^{-}(R) \mid F_A(X) = (A \otimes_R^{\mathbf{L}} X)_A \in \mathcal{P} \}$$

and it contains B because $A\otimes^{\mathbf{L}}_{R}B=0.$ In particular,

$$\operatorname{Supp} B \subseteq \operatorname{Supp} \varphi_A(\mathcal{P}) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \not\subseteq \mathfrak{s}(\varphi_A(\mathcal{P})) \}$$

and thus $\mathfrak{s}(\varphi_A(\mathcal{P})) \in \operatorname{Spec} R \setminus \operatorname{Supp} B = \operatorname{Supp} A$. Therefore, $\varphi_A(\mathcal{P}) \in W$ by Lemma 3.11. Conversely, take a prime thick tensor ideal \mathcal{P} from W. Then $\mathfrak{s}(\mathcal{P}) \in \mathfrak{s}(W) = \operatorname{Supp} A$ implies that $A \notin \mathcal{P}$. Therefore,

$$\varphi_A(\psi_A(\mathcal{P})) = \{ X \in \mathsf{D}^{-}(R) \mid A \otimes_R^{\mathbf{L}} X \in \mathcal{P} \} = \mathcal{P}$$

HIROKI MATSUI

since $A \notin \mathcal{P}$. Thus, we conclude that $\varphi_A(\operatorname{Spc}(\operatorname{\mathsf{Mod}} A)) = W$.

Acknowledgments. The author is grateful to his supervisor Ryo Takahashi for his many grateful comments. Also, the author very much thank the anonymous referee for his/her careful reading, valuable comments and helpful suggestions.

References

- P. BALMER, The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005), 149–168.
- [2] P. BALMER, Supports and filtrations in algebraic geometry and modular representation theory, Amer. J. Math. 129 (2007), 1227–1250.
- [3] P. BALMER, Separability and triangulated categories, Adv. Math. 226 (2011), no. 5, 4352–4372.
- [4] P. BALMER, Splitting tower and degree of tt-rings, Algebra Number Theory 8 (2014), no. 3, 767–779.
- [5] J. F. CARLSON, The variety of an indecomposable module is connected, *Invent. Math.* 77 (1984), no. 2, 291–299.
- [6] T. Y. LAM, A first course in noncommutative rings, Graduated Texts in Mathematics 131 (1984), 291–299.
- [7] H. MATSUI; R. TAKAHASHI, Thick tensor ideals of right bounded derived categories, Algebra Number Theory, 11 (2017), no. 7, 1677–1738.
- [8] D. ORLOV, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), no. 1, 206–217.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, FUROCHO, CHIKUSAKU, NAGOYA, AICHI 464-8602, JAPAN

Email address: m14037f@math.nagoya-u.ac.jp