
CONNECTEDNESS OF THE BALMER SPECTRUM OF THE RIGHT
BOUNDED DERIVED CATEGORY

HIROKI MATSUI

Abstract. By virtue of Balmer’s celebrated theorem, the classification of thick tensor
ideals of a tensor triangulated category T is equivalent to the topological structure
of its Balmer spectrum Spc T . Motivated by this theorem, we discuss connectedness,
irreducibility, and Noetherianity of the Balmer spectrum of a right bounded derived
category of finitely generated modules over a commutative ring.

1. Introduction

Tensor triangulated geometry is a theory introduced by Balmer [1] to study tensor tri-
angulated categories by algebro-geometric methods. Let (T ,⊗,1) be an essentially small
tensor triangulated category (i.e., a triangulated category T equipped with a symmetric
monoidal tensor product ⊗ which is compatible with the triangulated structure). Then
Balmer defined a topological space Spc T which we call the Balmer spectrum of T . A
celebrated theorem due to Balmer [1] states that the radical thick tensor ideals of T are
classified using the geometry of Spc T :

Theorem 1.1 (Balmer). There is an order-preserving one-to-one correspondence

{radical thick tensor ideals of T }
f // {Thomason subsets of Spc T },
g

oo

where f and g are given by f(X ) := BSuppX :=
∪

X∈X BSuppX and g(W ) :=

BSupp−1(W ) := {X ∈ T | BSuppX ⊆ W}, respectively.

From this result, if we want to classify the radical thick tensor ideals of a given ten-
sor triangulated category T , we have only to understand the topological space Spc T .
Therefore, it is crucial to discuss topological properties of the Balmer spectrum.

In this paper, we consider the right bounded derived category D-(modR) of a com-
mutative Noetherian ring R. This triangulated category is a tensor triangulated cate-
gory with respect to derived tensor product, and we can consider its Balmer spectrum
SpcD-(modR). The main results of this paper are the following two theorems:
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Theorem 1.2 (Theorem 3.1). If the Balmer spectrum SpcD-(modR) is a Noetherian
topological space, then the Zariski spectrum SpecR is a finite set.

Theorem 1.3 (Corollary 3.12). The Balmer spectrum SpcD-(modR) is connected if and
only if the Zariski spectrum SpecR is so.

Moreover, by using the latter theorem, we give a variant of a well-known result of Carlson
[5] in representation theory.

This paper is organized as follows. In Section 2, we recall some basic materials from
tensor triangulated geometry and point-set topology. In Section 3, we prove our main
theorems and give an application. In Section 4, we discuss realizing a clopen subset of
SpcD-(modR) as a Balmer spectrum.

2. Preliminaries

Throughout this paper, let R be a commutative Noetherian ring. For an ideal I of R,
we denote by V(I) the ideals of R containing I. We note that V(I) is a closed subset of

the Zariski spectrum SpecR and V(p) is the closure {p} of p in SpecR. Denote by D-(R)
(resp. Db(R)) the derived category of complexes M of finitely generated R-modules with
Hi(M) = 0 for all i ≫ 0 (resp. |i| ≫ 0). Then D-(R) is an essentially small tensor
triangulated category via derived tensor product ⊗L

R with unit R.
First we will recall the definitions of a thick tensor ideal, a radical thick tensor ideal,

and a prime thick tensor ideal.

Definition 2.1. Let T be an essentially small tensor triangulated category.

(1) A subcategory X of T is called a thick tensor ideal of T if it is a thick subcategory of
T and for any M ∈ T and N ∈ X , the tensor product M ⊗N belongs to X .

(2) For a thick tensor ideal X of T , we denote by
√
X the radical of X , that is, the

subcategory of T consisting of objects M such that the n-fold tensor product M ⊗
M ⊗ · · · ⊗M belongs to X for some integer n ≥ 1.

(3) A thick tensor ideal X of T is called radical if
√
X = X .

(4) A proper thick tensor ideal P of T is called prime ifM⊗N ∈ P implies eitherM ∈ P
or N ∈ P . The set of prime thick tensor ideals of T is denoted by Spc T and we call
it the Balmer spectrum of T .

For a thick tensor ideal X , its radical
√
X is a thick tensor ideal. Indeed, by [1, Lemma

4.2], it is equal to the intersection of all prime thick tensor ideals containing X .

Example 2.2. For a complex M ∈ D-(R), define the support of M by

SuppM := {p ∈ SpecR |Mp ̸∼= 0 in D-(Rp)}

=
∪
n∈Z

SuppHn(M).

Moreover, for a class X of objects of D-(R), denote by SuppX :=
∪

M∈X SuppM . Then,
for a subset W of SpecR,

Supp−1W := {M ∈ D-(R) | SuppM ⊆ W}
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is a thick tensor ideal of D-(R). Furthermore, if we take W := {q ∈ SpecR | q ̸⊆ p} for a
fixed p, then

S(p) := Supp−1W = {M ∈ D-(R) |Mp
∼= 0 in D-(Rp)}

is a prime thick tensor ideal of D-(R) by [7, Proposition 3.4].

Balmer [1] defined a topology on Spc T as follows.

Definition 2.3. (1) For an object M ∈ T , the Balmer support of M , denoted by
BSuppM , is defined as the set of prime thick tensor ideals not containing M . Set
U(M) := Spc T \ BSuppM .

(2) Define a topology on Spc T whose open basis is {U(X) | X ∈ T }.

We always consider this topology on the Balmer spectrum.
Next, let us recall some notions from point-set topology for later use.

Definition 2.4. Let X be a topological space.

(1) We say that a subspace of X is a clopen subset if it is closed and open in X.

(2) A subspace W of X is said to be specialization closed if for any x ∈ W , {x} ⊆ W
holds.

(3) A subspaceW of X is said to be generalization closed if for any x ∈ W and y ∈ X,

x ∈ {y} implies y ∈ W .
(4) We say that X is connected if it contains no non-trivial clopen subset. For a

subspace Y of X, we say that Y is a connected subspace of X if it is a connected
space by induced topology. Moreover, a connected component of X is a maximal
connected subspace of X.

(5) We say that X is irreducible if it is non-empty and not the union of two proper
closed subspaces. For a subspace Y of X, we say that Y is an irreducible subspace
of X if it is an irreducible space by induced topology. Moreover, an irreducible
component of X is a maximal irreducible subspace of X, which is automatically
closed since the closure of irreducible subspace is also irreducible.

(6) We say that X is Noetherian if every descending chain of closed subspaces stabi-
lizes.

Remark 2.5. (1) A subspace is generalization closed if and only if its complement is
specialization closed. In particular, every open subset of X is generalization closed.

(2) LetX ⊇ Y ⊇ Z be subspaces. If Y is specialization closed inX and Z is specialization
closed in Y , then Z is specialization closed in X.

(3) Let W be a subspace of SpecR. Then W is specialization closed (resp. generalization
closed) in SpecR if and only if

p ∈ W, p ⊆ q =⇒ q ∈ W

(resp. q ∈ W, p ⊆ q =⇒ p ∈ W ).

(4) [1, Proposition 2.9] Let T be an essentially small tensor triangulated category and
W a subspace of Spc T . Then W is specialization closed (resp. generalization closed)



4 HIROKI MATSUI

in Spc T if and only if

P ∈ W, P ⊇ Q =⇒ Q ∈ W

(resp. Q ∈ W, P ⊇ Q =⇒ P ∈ W ).

Lemma 2.6. Let X be a topological space. Then every connected component of X is both
specialization closed and generalization closed.

Proof. Fix a connected component O of X. For x ∈ O, {x} is irreducible and in particular

connected. Since O ∩ {x} is non-empty, O ∪ {x} is connected. Thus, O ∪ {x} must be

equal to O, and hence {x} ⊆ O. This shows that O is specialization closed in X.

For x ̸∈ O, assume that there exists y ∈ {x} with y ∈ O. Then {x} ∩ O is non-empty

as it contains y. Therefore, the same argument as above shows that {x} ⊆ O. This
gives a contradiction to x /∈ O. Thus, X \O is specialization closed in X and hence O is
generalization closed in X. ■

3. Main theorems

In this section, we discuss Noetherianity, connectedness, and irreducibility of the Balmer
spectrum SpcD-(R).

3.1. Noetherianity. Besides, we show the following theorem which gives a sufficient
condition for Noetherianity of the Balmer spectrum SpcD-(R).

Theorem 3.1. If the Balmer spectrum SpcD-(R) is a Noetherian topological space, then
SpecR is a finite set (i.e., semi-local ring with Krull dimension at most 1).

Before proving this, we give the following easy lemma.

Lemma 3.2. If SpecR has infinitely many prime ideals, then there is a countable an-
tichain of prime ideals.

Proof. If R has infinitely many maximal ideals, then we can take such a set as a countable
set of pairwise non-equal maximal ideals.

Assume that R has only finitely many maximal ideals. Then R has finite Krull dimen-
sion. Since R has infinitely many prime ideals, there is a non-negative integer n such that
the set {p ∈ SpecR | ht p = n} has infinitely many elements. Thus, a countable subset of
this set has the desired property. ■

For a complex M ∈ D-(R), denote by ⟨M⟩ the smallest thick tensor ideal of D-(R)
containing M .

Proof of Theorem 3.1. Assume that SpcD-(R) is Noetherian. Then for any chain of the
form BSuppM1 ⊇ BSuppM2 ⊇ BSuppM3 · · · with Mi ∈ D-(R) stabilizes. Thus, by

Theorem 1.1, every descending chain
√

⟨M1⟩ ⊇
√

⟨M2⟩ ⊇
√

⟨M3⟩ ⊇ · · · stabilizes.
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Assume furthermore that R has infinitely many prime ideals. From the previous lemma,
we can take a countable antichain {pn}n≥1 of prime ideals. Set Mn :=

⊕
i≥nR/pi[i] to be

the complex

Mn := (· · · 0−→ R/pn+2
0−→ R/pn+1

0−→ R/pn → 0 · · · ).
Here, R/pi fit into the (−i)-th component. Then Mn belongs to D-(R), and Mn+1 is a
direct summand of Mn for each integer n ≥ 1. Therefore, we have a descending chain√
⟨M1⟩ ⊇

√
⟨M2⟩ ⊇

√
⟨M3⟩ ⊇ · · · of radical thick tensor ideals. From the above argu-

ment, we get an equality
√

⟨Mn⟩ =
√

⟨Mn+1⟩ for some integer n ≥ 1. Taking Supp, we
obtain ∪

i≥n

V(pi) = Supp
√

⟨Mn⟩ = Supp
√

⟨Mn+1⟩ =
∪

i≥n+1

V(pi).

Hence, there is an integer m ≥ n+ 1 such that pm ⊆ pn. This gives a contradiction. ■

Remark 3.3. If R is Artinian, then by [7, Theorem 6.5], SpcD-(R) is homeomorphic to
SpecR. In particular, SpcD-(R) is a Noetherian topological space.

3.2. Connectedness. In this subsection, we mainly discuss connectedness of the Balmer
spectrum SpcD-(R). We use the following pair of maps defined in [7] to compare two
spectra:

s : SpcD-(R) ⇄ SpecR : S.
Here the map S was defined in Example 2.2 and s(P) is the unique maximal element of
the set of ideals I of R with R/I ̸∈ P , see [7, Proposition 3.7]. Let me list some basic
properties of these maps in the following proposition.

Proposition 3.4. [7, Theorem 3.9, Corollary 3.10, Theorem 4.5]

(1) Both maps s and S are order-reversing.
(2) s is continuous.
(3) s · S = 1. In particular, s is surjective and S is injective.
(4) For a prime thick tensor ideal P of D-(R), one has

Ss(P) = Supp−1 Supp(P) ⊇ P .

(5) For a prime thick tensor ideal P of D-(R), one has

SuppP = {p ∈ SpecR | p ̸⊆ s(P)}.

Remark 3.5. As it has been shown in [7, Theorem 4.7], S is not continuous in general.

The following theorem is the main result of this subsection.

Theorem 3.6. Let C ∈ Db(R) be a bounded complex.

(1) There is a one-to-one correspondence{
connected components of BSuppC

} s //

s−1
oo

{
connected components of SuppC

}
.
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(2) There is a one-to-one correspondence{
irreducible components of BSuppC

} s //

s−1
oo

{
irreducible components of SuppC

}
.

The proof of this theorem is divided into several lemmata.
Fix a bounded complex C ∈ Db(R). Then by [7, Proposition 2.9], for a thick tensor

ideal X , C ∈ X if and only if SuppC ⊆ SuppX . By combining this with Proposition 3.4,
P ∈ BSuppC if and only if Ss(P) ∈ BSuppC for a prime thick tensor ideal P of D-(R).

Lemma 3.7. (1) s(BSuppC) = SuppC.
(2) S(SuppC) ⊆ BSuppC.

Proof. (1) For a prime thick tensor ideal P in BSuppC, we have the following equivalences:

P ∈ s−1(SuppC) ⇔ s(P) ∈ SuppC

⇔ SuppC ̸⊆ SuppP = {p ∈ SpecR | p ̸⊆ s(P)}
⇔ C ̸∈ P
⇔ P ∈ BSuppC.

Here, the first and the last equivalences are clear. Since {p ∈ SpecR | p ̸⊆ s(P)}
is the largest specialization closed subset of SpecR not containing s(P), the second
equivalence holds. The third one follows from the above discussion. As a result,
SuppC = s(s−1(SuppC)) = s(BSuppC) since s is surjective.

(2) For an element p ∈ SuppC, SuppC ̸⊆ SuppS(p) = {q ∈ SpecR | q ̸⊆ sS(p) = p}
shows C ̸∈ S(p). Thus, we obtain S(p) ∈ BSuppC. ■

From this lemma, the maps

s : SpcD-(R) ⇄ SpecR : S
restrict to maps

s : BSuppC ⇄ SuppC : S.

Lemma 3.8. The above pair of maps induce a one-to-one correspondence

s : MaxBSuppC ⇄ Min SuppC : S.
Here, MaxBSuppC (resp. Min SuppC) is the set of maximal (resp. minimal) elements of
BSuppC (resp. SuppC) with respect to the inclusion relation.

If we take C = R, this lemma recovers [7, Theorem 4.12].

Proof. Because S : SpecR → SpcD-(R) is injective, we have only to check that the
map S : Min SuppC → MaxBSuppC is well-defined and surjective. Let p be a minimal
element of SuppC. We show that S(p) is a maximal element of BSuppC. Take a prime
thick tensor ideal P in BSuppC containing S(p). Then s(P) ⊆ sS(p) = p by Proposition
3.4. Since both p and s(P) belong to SuppC by Lemma 3.7, the minimality of p shows
the equality p = s(P). Hence, we have

SuppP = {q ∈ SpecR | q ̸⊆ s(P) = p = s(S(p))} = SuppS(p).
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This shows that P ⊆ S(p) and thus S(p) is a maximal element in BSuppC. For this
reason, the map S : Min SuppC → MaxBSuppC is well-defined.
Next we check the surjectivity of the map S : Min SuppC → MaxBSuppC. Let P be a

maximal element of BSuppC. It follows from Lemma 3.7 that Ss(P) is also an element
in BSuppC. On the other hand, Ss(P) contains P by Proposition 3.4(3). Thus, we get
P = Ss(P) from the maximality of P . Let p be an element of SuppC with p ⊆ s(P).
Then P = Ss(P) ⊆ S(p). Since P is maximal in BSuppC, one has P = S(p). Hence,
p = sS(p) = s(P) and this shows that s(P) is a minimal element of SuppC. As a result,
one has S(p) = Ss(P) = P and this shows that S : Min SuppC → MaxBSuppC is
surjective. ■

The following result gives an easier way to check whether a given subspace is clopen.

Lemma 3.9. Let X be either SuppC or BSuppC and W a subset of X. If W is both
specialization closed and generalization closed, then W is clopen.

Proof. We show this statement only for X = BSuppC because a similar argument works
also for X = SuppC. By symmetry, we need to check that W is closed.

Claim. W =
∪

P∈MaxBSuppC∩W {P}.

Proof of claim. Since W is specialization closed, W ⊇
∪

P∈MaxBSuppC∩W {P} holds. Let

P be an element of W . Take a minimal element p in SuppC contained in s(P). We can
take such a p since SuppC is a closed subset of SpecR. Then

P ⊆ Ss(P) ⊆ S(p).

By Lemma 3.8, S(p) is a maximal element of BSuppC. Moreover, S(p) belongs to W
since W is generalization closed and P ∈ W . These show that S(p) is a maximal element

of BSuppC. Accordingly, we obtain P ∈ {S(p)} with S(p) ∈ MaxBSuppC and hence the
converse inclusion holds true. □

Note that SuppC is closed and thus contains only finitely many minimal elements.
By using the one-to-one correspondence in Lemma 3.8, MaxBSuppC is also a finite set.
Consequently, W is a finite union of closed subsets, and hence is closed. ■

Lemma 3.10. Let U be a clopen subset of BSuppC. Then

(1) p ∈ s(U) if and only if S(p) ∈ U , and
(2) s(U) is a clopen subset in SuppC.

Proof. (1) The ‘if’ part is from Proposition 3.4(3). Let p be an element of s(U) ⊆
s(BSuppC) = SuppC. Then there is a prime thick tensor ideal P ∈ U such that s(P) = p.
Then S(p) belongs to U because P ⊆ Ss(P) = S(p) and U is generalization closed in
BSuppC.

(2) By Lemma 3.9, we have only to check that s(U) and SuppC \s(U) are specialization
closed in SuppC.
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Take p ∈ s(U) and q ∈ V(p). Then S(q) ⊆ S(p). From (1), one has S(p) ∈ U . Since U
is specialization closed, we get S(q) ∈ U . Thus, q = sS(q) belongs to s(U). This shows
that s(U) is specialization closed in SuppC.

Take p ∈ SuppC \ s(U) and q ∈ V(p). Then S(q) ⊆ S(p). From (1), one has S(p) ̸∈ U .
Assume that S(q) belongs to U . Since U is generalization closed, S(p) belongs to U , a
contradiction. Thus, S(q) ̸∈ U and hence q ̸∈ s(U) by (1). This shows that SuppC \ s(U)
is specialization closed in SuppC. ■
Lemma 3.11. Let U be a clopen subset of BSuppC. Then s−1s(U) = U .

Proof. The inclusion U ⊆ s−1s(U) is trivial. For a prime thick tensor ideal P ∈ s−1s(U),
one has s(P) ∈ s(U). By Lemma 3.10(1), we obtain Ss(P) ∈ U . Since U is specialization
closed in BSuppC and P ⊆ Ss(P), we conclude that P belongs U . ■
Now, we are ready to prove Theorem 3.6.

(Proof of Theorem 3.6). (1) By Lemma 3.10(2), we obtain a well-defined map

{clopen subsets of BSuppC} → {clopen subsets of SuppC}, U 7→ s(U).

This map is injective by Lemma 3.11 and surjective since s : BSuppC → SuppC is con-
tinuous and surjecive. Thus, this map is an order-preserving one-to-one correspondence.

Our topological spaces BSuppC and SuppC have only finitely many connected compo-
nents by Lemma 2.6, Lemma 3.8, and the proof of Lemma 3.9. Thus, connected compo-
nents are nothing but minimal non-empty clopen subsets. Therefore, the statement (1)
follows from the above order-isomorphism.

(2) By [1, Proposition 2.9, Proposition 2.18], every irreducible closed subset of BSuppC
is of the form

{P} = {Q ∈ SpcD-(R) | Q ⊆ P}
for a unique prime thick tensor ideal P ∈ BSuppC. Since an irreducible component is by
definition a maximal irreducible closed subset, every irreducible component of BSuppC is
of the form {P} for a unique maximal element P of BSuppC. Thus, P = S(p) for some
minimal element p of SuppC by Lemma 3.8. Similarly, every irreducible component of
SuppC is of the form {p} for a unique minimal element p of SuppC. Therefore, there
is a maximal element P of BSuppC such that p = s(P) by Lemma 3.8. Altogether,
the one-to-one correspondence of Lemma 3.8 gives a one-to-one correspondence what we
want. ■
The following connectedness result is a direct consequence of Theorem 3.6.

Corollary 3.12. For a bounded complex C ∈ Db(R), BSuppC is connected (resp. irre-
ducible) if and only if SuppC is connected (resp. irreducible). In particular, SpcD-(R)
is connected (resp. irreducible) if and only if SpecR is connected (resp. irreducible).

Remark 3.13. A part of this corollary is shown in [7, Corollary 4.13].

As an application of Theorem 3.6, we obtain the following corollary:



CONNECTEDNESS OF THE BALMER SPECTRUM 9

Corollary 3.14. Let C ∈ Db(R) be a bounded complex. If C is indecomposable in D-(R),
then BSuppC is connected.

Proof. By Theorem 3.6, it is enough to show that SuppC is connected.
Take an ideal I with SuppC = V(I). It follows from [8, Lemma 2.1] that there exists a

bounded complex B such that

(i) B is quasi-isomorphic to C,
(ii) SuppBi ⊆ V(I).

By (ii), we can take an integer n > 0 with InBi = 0 for each i. Thus we may assume that
SuppC = V(I) and IC i = 0 for each i.
Consider a decomposition SuppC = F1 ⊔ F2 with F1, F2 closed. Then there are radical

ideals I1 and I2 such that Fi = V(Ii) (i = 1, 2), I1 + I2 = R, and I1 ∩ I2 =
√
I. Using

Chinese remainder theorem, we obtain a direct sum decomposition

R/
√
I ∼= R/I1 ⊕R/I2.

Moreover, from the idempotent lifting theorem (see [6, Proposition 21.25]), we obtain the
following decomposition

R/I ∼= R/J1 ⊕R/J2.

Here, J1 and J2 are ideals with
√
Ji = Ii for i = 1, 2. Tensoring with C, we get the

following direct sum decomposition:

C ∼= C ⊗R R/I ∼= (C ⊗R R/J1)⊕ (C ⊗R R/J2).

Since C is indecomposable, C ⊗R R/J1 ∼= C or C ⊗R R/J2 ∼= C. If C ⊗R R/J1 ∼= C, then
we obtain

V(I) = SuppC = Supp(C ⊗R R/J1) ⊆ V(J1)

and thus SuppC = V(I) = V(I1) = F1. Similarly, if C ⊗R R/J2 ∼= C, then one has
SuppC = F2. Thus, we are done. ■
This corollary means that the Balmer support of an indecomposable R-module is con-

nected. Such a result has been shown by Carlson [5] for the stable category of finite
dimensional representations over a finite group, and more generally, by Balmer [2] for an
idempotent complete rigid tensor triangulated category.

4. Realizing a clopen subset as a Balmer spectrum

In this section, we prove that every clopen subset of SpcD-(R) is homeomorphic to the
Balmer spectrum of the Eilenberg-Moore category of some ring object. Following [3, 4],
we recall the notion of a ring object and related concepts.

Let (T ,⊗,1) be a tensor triangulated category. We say that an object A ∈ T is a ring
object of T if there is a morphisms

µ : A⊗ A→ A,

η : 1 → A
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satisfying the following commutative diagrams:

A⊗ A⊗ A
A⊗µ //

µ⊗A
��

A⊗ A

µ

��
A⊗ A µ

// A

1⊗ A
η⊗A //

∼=
%%KK

KKK
KKK

KKK
A⊗ A

µ

��

A⊗ 1
A⊗ηoo

∼=
yysss

sss
sss

ss

A

We say that a ring object A of T is commutative if µτ = µ holds, where

τ : A⊗ A→ A⊗ A

is the swap of factors. We say that a ring object A of T is separable if there is a morphism

σ : A→ A⊗ A

such that (A⊗ µ)(σ ⊗ A) = σµ = (µ⊗ A)(A⊗ σ).
We say that an object M ∈ T is a (left) A-module if there is a morphism

λ : A⊗M →M

satisfying the following commutative diagrams:

A⊗ A⊗M
A⊗λ //

µ⊗M
��

A⊗M

λ
��

A⊗M
λ

// M

1⊗M
η⊗M //

∼= %%LL
LLL

LLL
LLL

A⊗M

λ
��
M

Denote by ModA the category of A-modules.
Let me give the following easy observation.

Lemma 4.1. If R is decomposed into R = A × B as rings, then A has a unique ring
object structure by the natural multiplication µ : A⊗L

RA
∼= A⊗RA ∼= A and the projection

η : R → A. Moreover, the following holds true.

(1) A is a commutative separable ring object in D-(R).
(2) For any complexM ∈ D-(R), it has an A-module structure if and only if A⊗L

RM
∼= M .

This is the case, its A-module structure is uniquely determined by underlying complex.
(3) For A-modules M and N , M ⊗L

R N is an A-module. Hence ModA is a tensor tri-
angulated category via ⊗L

R and the forgetful functor UA : ModA → D-(R) preserves
tensor products.

Proof. Since A is a projective R-module, the statement (1) means that A is a commutative
separable R-algebra in the usual sense and this is clear. Uniqueness of this structure
follows from (2).
(2) Let M be an A-module. Consider the following commutative diagram:

R⊗L
R M

η⊗L
RM

//

∼=
&&MM

MMM
MMM

MMM
A⊗L

R M

λ
��
M
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In particular, the composition Hi(λ) ◦ Hi(η ⊗L
R M) is an isomorphism for each integer i.

Since η ⊗L
R M is a split epimorphism, Hi(η ⊗L

R M) is also a split epimorphism and hence
is an isomorphism for each i. This shows that η ⊗L

R X is a quasi-isomorphism. From the
above commutative diagram, λ is also a quasi-isomorphism.
Take an object M ∈ D-(R) with A⊗L

RM
∼= M . Then the following morphism gives an

A-module structure to M :

A⊗L
R M

∼= A⊗L
R A⊗L

R M
µ⊗L

RM
−−−−→ A⊗L

R M
∼= M.

Moreover, the A-module structure λ is uniquely determined as

A⊗L
R M

(η⊗L
RM)−1

−−−−−−→ R⊗L
R M

∼=−→M.

The last statement (3) directly follows from (2). ■
From (2) in the above lemma, we can define a unique A-module structure for a complex

M ∈ D-(R) with A ⊗L
R M

∼= M . For simplicity, we denote this A-module by MA. In
addition, for a complex M ∈ D-(R), A ⊗L

R M has an A-module structure and hence we
can define a triangulated functor

FA : D-(R) → ModA, M 7→ A⊗L
R M.

Corollary 4.2. For any non-empty clopen subsetW of SpcD-(R), there is a commutative
separable ring object A of D-(R) such that

φA := aFA : Spc(ModA) → SpcD-(R), P 7→ F−1
A (P)

gives a homeomorphism onto W .

Proof. By Lemma 3.10, s(W ) is a clopen subset of SpecR. Therefore, by Corollary 3.14,
there is a direct sum decomposition R = A×B of rings with s(W ) = SuppA. Then Lemma
4.1 shows that A has a commutative separable ring object structure. Since UA preserves
tensor products, one can easily check that the forgetful functor UA : ModA → D-(R)
induces a continuous injective map

ψA : BSuppA→ Spc(ModA),P 7→ U−1
A (P),

see [1, Proposition 3.6]. Furthermore, the image of φA is contained in BSuppA and
ψAφA = 1 because FAUA

∼= 1. For this reason, we have only to check that the image of
φA is W .

Let P be a prime thick tensor ideal of ModA. By definition,

φA(P) = {X ∈ D-(R) | FA(X) = (A⊗L
R X)A ∈ P}

and it contains B because A⊗L
R B = 0. In particular,

SuppB ⊆ SuppφA(P) = {p ∈ SpecR | p ̸⊆ s(φA(P))}
and thus s(φA(P)) ∈ SpecR \ SuppB = SuppA. Therefore, φA(P) ∈ W by Lemma 3.11.
Conversely, take a prime thick tensor ideal P from W . Then s(P) ∈ s(W ) = SuppA
implies that A ̸∈ P . Therefore,

φA(ψA(P)) = {X ∈ D-(R) | A⊗L
R X ∈ P} = P
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since A /∈ P . Thus, we conclude that φA(Spc(ModA)) = W . ■
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