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ABSTRACT. In this paper we revisit an example of Celikbas and Takahashi concerning the
reflexivity of tensor products of modules. We study Tor-rigidity and the Hochster–Huneke
graph with vertices consisting of minimal prime ideals, and determine a condition with which
the aforementioned example cannot occur. Our result, in particular, corroborates the Second
Rigidity Theorem of Huneke and Wiegand.

1. INTRODUCTION

Throughout R denotes a commutative Noetherian local ring with unique maximal ideal m,
and all R-modules are assumed to be finitely generated. For unexplained notations and termi-
nology, such as the definitions of homological dimensions, we refer the reader to [4, 6, 20].

In this paper we are concerned with the following result of Huneke and Wiegand, which is
known as the Second Rigidity Theorem; see [16, 2.1].

Theorem 1.1. (Huneke and Wiegand [16]) Let R be a hypersurface ring, and let M and N be
R-modules such that M has rank, i.e., there is a nonnegative integer r such that Mp is free of
rank r for each associated prime ideal p of R (e.g., pdR(M)< ∞). If M⊗R N is reflexive, or in
this context equivalently, is a second syzygy module, then N is reflexive. □

Another conclusion of Theorem 1.1, which is worth noting, is the vanishing of TorR
i (M,N)

for each i ≥ 1. For quite some time it has been an open problem whether the module M in
Theorem 1.1 must also be reflexive; see [18]. Recently Celikbas and Takahashi [10] has given
an example disproving this query: there is a reduced hypersurface ring R, and modules M and
N over R such that both M ⊗R N and N are reflexive, pdR(M) < ∞, but M is not reflexive.
Moreover, it can be easily checked that there exists a prime ideal q of R of height one such that
the module N in the example satisfies pdRq

(Nq) = ∞; see Example 4.5 for details. The main
aim of this paper is to show that such an example cannot occur in case pdRp

(Np)< ∞ for each
prime ideal p of R of height at most one. More precisely, we prove:

Theorem 1.2. Assume R is a hypersurface ring (quotient of an unramified regular local ring),
and M and N are nonzero R-modules. Assume further:

(i) pd(M)< ∞.
(ii) pdRp

(Np)< ∞ for each prime ideal p of R of height at most one.

If M⊗R N is reflexive, then both M and N are reflexive.
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We give a proof of Theorem 1.2 in section 4, but in fact our main argument is more general:
we consider tensor products M⊗R N which are n-th syzygy modules for n ≥ 2 and modules N
of finite complete intersection dimension over rings that are not necessarily hypersurfaces; see
Theorem 3.1. A key ingredient of our proof is the fact that, when R satisfies Serre’s condition
(S2), the Hochster-Huneke graph [15] is connected; see Theorem 4.3.

2. PRELIMINARIES

2.1. An R-module M is said to be Tor-rigid provided that the following condition holds: if N is
an R-module with TorR

1 (M,N) = 0, then TorR
2 (M,N) = 0. Examples of Tor-rigid modules are

abundant in the literature. For example, each syzgy of the R-module M is Tor-rigid if:
(i) R is a hypersurface that is quotient of an unramified regular local ring, and M has either

finite length or finite projective dimension; see [16, 2.4] and [19, Theorem 3].
(ii) R has positive depth and M =mr for some integer r ≥ 1; see [11, 2.5]. □

2.2. Let M be an R-module with a projective presentation P1
f→ P0 → M → 0. The transpose

TrM of M is the cokernel of f ∗ = HomR( f ,R), and hence is given by the exact sequence:
0 → M∗ → P∗

0 → P∗
1 → TrM → 0. Note TrM is well-defined up to projective summands.

Given an integer n ≥ 0, it follows from [2, 2.8] that there is an exact sequence of functors:

0 → Ext1
R(TrΩ

nM,−)→ TorR
n (M,−)→ HomR(Ext

n
R(M,R),−)→ Ext2

R(TrΩ
nM,−). □

Recall that an R-module N is said to be torsionless if the natural map N → N∗∗ is injective,
i.e., Ext1

R(TrN,R) = 0; see 2.2.

2.3. Let N be a torsionless R-module and let { f1, f2, . . . , fs} be a minimal generating set of
the module N∗ = Hom(N,R). Let δ : R⊕s ↠ N∗ be defined by δ (ei) = fi for i = 1,2, . . . ,s,
where {e1,e2, . . . ,es} is the standard basis for R⊕s. Then, composing the natural injective map
N ↩→ N∗∗ with δ ∗, we obtain the short exact sequence:

0 → N u→ R⊕s → N1 → 0,

where u(x) = ( f1(x), f2(x), . . . , fs(x)) for all x ∈ N; see 2.2. Any module N1 obtained in this
way is called a pushforward (or left projective approximation) of M; see [3, 13]. Note that such
a construction is unique, up to a non-canonical isomorphism; see, for example, [13, page 62].
Also it follows Ext1

R(N1,R) = 0 so that ΩTrN ∼=TrN1 (up to free summands); see [2, 3.9]. □

2.4. Let M be an R-module and let n ≥ 0 be an integer. Then M is said to satisfy ( !Sn) provided
depthRq

(Mq)≥ min{n,depth(Rq)} for each q ∈ Supp(M) (note depth(0) = ∞) If R is Cohen-
Macaulay, then M satisfies ( !Sn) if and only if M satisfies Serre’s condition (Sn); see [13]. □

2.5. Given an integer s ≥ 0, we set Ys(R) = {p ∈ SpecR | depth(Rp)≤ s}. In particular, Y0(R)
denotes the set of all associated prime ideals of R.

2.6. ([12, 2.4] and [13, 3.8]) Let M be an R-module and let n ≥ 1 be an integer. Assume that
G-dimRp(Mp)< ∞ for each p ∈ Yn−1(R). Then the following conditions are equivalent:

(i) M satisfies ( !Sn).
(ii) M is n-torsion-free, i.e., Exti

R(TrM,R) = 0 for each i = 1, . . . ,n.
(iii) M is an n-th syzygy module, i.e., M ∼= Ωn(N) for some R-module N. □
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2.7. Let M and N be R-modules with CI-dim(M)< ∞ or CI-dim(N)< ∞. If TorR
i (M,N) = 0 for

each i ≥ 1, then depth(M)+depth(N) = depth(R)+depth(M ⊗R N), i.e., the depth formula
holds; see [1, 2.5]. □

2.8. Let M and N be R-modules such that CI-dim(N) = 0. Then Exti
R(TrN,M) = 0 for all i ≥ 1

if and only if TorR
i (M,N) = 0 for all i ≥ 1; see [9, 3.2]. □

3. MAIN THEOREM

In this section we will prove the following theorem which is our main result:

Theorem 3.1. Let M and N be nonzero R-modules, and let n ≥ 1 be an integer. Assume:
(i) M is Tor-rigid.

(ii) CI-dim(N)< ∞.
(iii) M⊗R N satisfies ( !Sn).
(iv) TorR

i (M,N) is torsion for all i ≫ 0.

Then TorR
i (M,N) = 0 for all i ≥ 1, and N satisfies ( !Sn). □

To prove Theorem 3.1, we will establish several lemmas.

Lemma 3.2. Let 0 → N
µ−→ F → N1 → 0 be a short exact sequence of R-modules, where F is

free and Ext1
R(N1,R) = 0. Then it follows that Ext1

R(TrN,M)∼= TorR
1 (N1,M).

Proof. We consider the following commutative diagram, where the horizontal maps are the
natural ones and Hom(µ∗, M) is injective:

M⊗R N

µ⊗M
!!

χ
"" HomR(N∗,M)

Hom(µ∗, M)
!!

M⊗R F
∼= "" HomR(F∗,M)

Note that Ext1
R(TrN,M) = ker(χ); see 2.2. Hence it follows from the above diagram that

Ext1
R(TrN,M) = ker(χ)∼= ker(µ ⊗M) = TorR

1 (N1,M), as required. □
Lemma 3.3. Let M and N be R-modules with CI-dimR(N) < ∞. If TorR

i (M,N) is torsion for
all i ≫ 0, then TorR

i (M,N) and Exti
R(TrN,M) are torsion for each i ≥ 1; cf., [7, A.2.].

Proof. Let p ∈ Y0(R). Then, since Tor
Rp

i (Mp,Np) = 0 for all i ≫ 0 and CI-dimRp(Np) = 0, we
conclude that TorRp

i (Mp,Np) = 0 for all i ≥ 1 and also Exti
Rp
(TrRpNp,Mp) = 0 for all i ≥ 1; see

2.8 and [5, 4.9]. □
Lemma 3.4. Let M and N be R-modules such that M ∕= 0 and M is Tor-rigid. If n ≥ 1 is an
integer and Extn

R(N,M) = 0, then Extn
R(N,R) = 0.

Proof. It follows from [2, 2.8(b)] that there is an exact sequence:

TorR
2 (TrΩ

nN,M)→ Extn
R(N,R)⊗R M → Extn

R(N,M)→ TorR
1 (TrΩ

nN,M)→ 0.

As Extn
R(N,M) = 0 and M is Tor-rigid, we have that TorR

2 (TrΩnN,M) = 0. Thus we conclude
Extn

R(N,R)⊗R M ∼= Extn
R(N,M) = 0. This gives, since M ∕= 0, that Extn

R(N,R) = 0. □
We are now ready to give a proof for our main result:
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Proof of Theorem 3.1. Note, to show N satisfies ( !Sn), in view of 2.6 and Lemma 3.4, it suffices
to prove Exti

R(TrN,M) = 0 for each i = 1, . . . ,n. The vanishing of Exti
R(TrN,M), as well as

that of TorR
i (M,N), is clear if depth(R) = 0; see Lemma 3.3. So we assume depth(R)≥ 1.

It follows from 2.2 that there is an injection: Ext1
R(TrN,M) ↩→ M ⊗R N. It is easy to see,

since M⊗R N satisfies ( !S1), that M⊗R N is torsion-free. On the other hand, Ext1
R(TrN,M) is tor-

sion; see Lemma 3.3. This establishes the theorem for the case where n = 1, and also yield the
vanishing of TorR

i (M,N) as we observe next: it follows from Lemma 3.4 that Ext1
R(TrN,R)= 0,

and hence we can consider the pushforward N1 of N; see 2.6 and 2.3. Now Lemma 3.2 shows
Ext1

R(TrN,M) = 0 = TorR
1 (N1,M). As M is Tor-rigid, we have TorR

i (M,N) = 0 for each i ≥ 1.
Next we assume n ≥ 2, and proceed by induction on n to show that N satisfies ( !Sn). Suppose

there is an integer t such that t < n and Exti
R(TrN,M) = 0 for each i = 1, . . . , t. Our aim is to

prove the vanishing of Extt+1
R (TrN,M).

It follows from Lemma 3.4, that Exti
R(TrN,R) = 0 for each i = 1, . . . , t, i.e., N satisfies (!St).

Therefore we can consider the pushforward sequences

(3.1.1) 0 → Ni−1 → Fi → Ni → 0,

where N0 = N, Fi is free and Ext1
R(Ni,R) = 0 for each i = 1, . . . , t; see 2.3.

Note that, for each i = 1, . . . , t, we have:

(3.1.2) TorR
1 (M,Ni)∼= Ext1

R(TrNi−1,M)∼= Exti
R(TrN,M) = 0.

Here, the first isomorphism in (3.1.2) is due to Lemma 3.2, while the second isomorphism
follows since Ωi−1TrN ∼= TrNi−1 for i = 1, . . . t; see 2.3.

Now, in view of (3.1.2), tensoring the short exact sequences in (3.1.1) with M, we obtain the
following short exact sequences for each i = 1, . . . , t:

(3.1.3) 0 → M⊗R Ni−1 → M⊗R Fi → M⊗R Ni → 0.

Recall our aim is to show that Extt+1
R (TrN,M) = 0, and since ΩtTrN ∼= TrNt (up to free

summands), we have Extt+1
R (TrN,M)∼= Ext1

R(TrNt ,M); see 2.3. So 2.2 yields an injection as:

(3.1.4) Extt+1
R (TrN,M) ↩→ M⊗R Nt .

Next we assume Extt+1
R (TrN,M) ∕= 0, pick q∈Ass(Extt+1

R (TrN,M)), and seek a contradiction.
Suppose q ∈ Yt(R). Then, since N satisfies (!St), we have depthRq

(Nq) ≥ depth(Rq). This
shows CI-dimRq(Nq) = depth(Rq)− depthRq

(Nq) = 0. Therefore, since TorR
i (M,N) = 0 for

each i ≥ 1, we deduce from 2.8 that Exti
R(TrN,M)q = 0 for each i ≥ 1. In particular q /∈ Yt(R),

i.e., depth(Rq)≥ t +1, because of the fact that Extt+1
R (TrN,M)q ∕= 0.

Notice q ∈ Supp(M)∩Supp(N). Hence it follows from 2.7 that

(3.1.5) depthRq
(Mq) =

"
depth(Rq)−depthRq

(Nq)
#
+depthRq

(Mq⊗Rq Nq)≥ t +1.

The inequality in (3.1.5) are due to the following facts: t+1≤ n so that M⊗R N satisfies (!St+1),
depth(Rq)≥ t +1, and CI-dimRq(Nq) = depth(Rq)−depthRq

(Nq)≥ 0.
Recall that Extt+1

R (TrN,M)q is a nonzero module of depth zero. Hence, we see, by revisiting
(3.1.4), that depthRq

(Mq⊗Rq (Nt)q) = 0. However, by localizing (3.1.3) at q and using depth
lemma, along with (3.1.5), we have depthRq

(Mq⊗Rq Nq) = t; this is a contradiction since M⊗R

N satisfies (!St+1) and so depthRq
(Mq ⊗Rq Nq) ≥ t + 1. Consequently, Extt+1

R (TrN,M) must
vanish, and this completes the proof of the theorem. □
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4. PROOF OF THEOREM 1.2 AND FURTHER REMARKS

Definition 4.1. ([15]) The Hochster-Huneke graph G(R) is defined as follows:
• The set of vertices equals Min(R), i.e., vertices are the minimal prime ideals of R.
• There is an edge between two vertices p and q of G(R)⇐⇒ height(p+q)≤ 1.

Remark 4.2. ([15]) The following hold for the graph G(R):
(i) Given two vertices p1 and p2 of G(R), there is an edge between p1 and p2 if and only if

p1 +p2 is contained in some height-one prime ideal q.
(ii) G(R) is connected if and only if given two vertices p and p′ of G(R), there are minimal

prime ideals {p0,p1, . . . ,pr} of R, and height-one prime ideals {q1,q2, . . . ,qr} of R, where
p= p0, p′ = pr and pi,pi+1 ⊆ qi+1 for each i = 0,1, . . . ,r−1. □

The first part of the next proposition is proved in [15, 3.6] for complete local rings. Here,
for the convenience of the reader, we go over its proof since we do not assume R is complete.

Proposition 4.3. Assume R satisfies (S2), e.g., R is Cohen-Macaulay. Then the following hold:

(i) G(R) is connected.
(ii) If N is an R-module such that Np is free for each p ∈ Y 1(R), then N has rank.

Proof. (i) We assume G(R) is not connected, and seek a contradiction.
Notice, since G(R) is disconnected, there is a nontrivial partition of the set of all minimal

prime ideals of R as Min(R) = {p1, · · · ,pr}⊔{q1, · · · ,qs}, where height(pi +q j)≥ 2 for each
i and j. Letting I =

!r
i=1 pi and J =

!s
j=1 q j, we get two non-nilpotent ideals I and J such that

IJ is nilpotent. Moreover it follows that height(I + J)≥ 2 since

V (I+J) =V (I)∩V (J) =

$
r"

i=1

V (pi)

%
#

$
s"

j=1

V (q j)

%
=

"

i, j

V (pi+q j) and height(pi+q j)≥ 2.

By replacing the ideals I and J with their appropriate powers, we may assume IJ = 0.
Since R satisfies (S2) and height(I+J)≥ 2, there is an R-regular sequence {u+v,u′+v′} in

I+J, where u,u′ ∈ I and v,v′ ∈ J. In view of the fact v′(u+v)−v(u′+v′) = v′u−vu′ ∈ IJ = 0,
we conclude that there is an element a ∈ R such that v = a(u+ v). Similarly, we deduce that
u = b(u+v) for some b ∈ R. Therefore we have u+v = (a+b)(u+v), and hence a+b is unit
in R. This implies that either a or b is unit in R. We assume, without loss of generality, that a
is unit. Then u is R-regular, and the equality uJ = 0 shows that J = 0, which is a contradiction.
Consequently, G(R) is not connected.

(ii) Note, as R satisfies (S2), each associated prime of R is minimal, and p ∈ Y 1(R) if and
only if height(p)≤ 1. Moreover, by part (i), we know G(R) is connected.

Let p and p′ be two minimal prime ideals of R. Then we know there are minimal prime
ideals {p0,p1, . . . ,pr} of R, and height-one prime ideals {q1,q2, . . . ,qr} of R, where p = p0,
p′ = pr and pi,pi+1 ⊆ qi+1 for each i = 0,1, . . . ,r−1.

By assumption, for each i = 0,1, . . . ,r−1, we know that the modules Mpi , Mpi+1 and Mqi+1

are free. Moreover, as (Mqi+1)piRqi+1
∼= Mpi , for each i = 0,1, . . . ,r−1, we deduce:

rankRpi
(Mpi) = rankRqi+1

(Mqi+1) = rankRpi+1
(Mpi+1).

This shows that rankRp(Mp) = rankRp′ (Mp′), as required. □
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We can strengthen the conclusion of Theorem 3.1, and show that both modules in question
satisfy ( !Sn) in case local freeness hypothesis on Y1(R) is included in our assumptions.

Corollary 4.4. Assume R satisfies (S2), n is a positive integer, and M and N are nonzero
R-modules. Assume further:

(i) M is Tor-rigid.
(ii) CI-dim(N)< ∞.

(iii) M⊗R N satisfies ( !Sn).
(iv) pdRp

(Np)< ∞ for each p ∈ Y1(R).

Then TorR
i (M,N) = 0 for all i ≥ 1, and both M and N satisfy ( !Sn).

Proof. It follows from Theorem 3.1 that TorR
i (M,N) = 0 for all i ≥ 1, and N satisfies ( !Sn).

Note that, both M⊗R N and N satisfy (S1). Hence Np is free for each p ∈ Y1(R). In particular,
N has rank due to Proposition 4.3(ii). Therefore, since M⊗R N is torsion-free, we conclude that
Supp(N) = Spec(R). Now the depth formula shows M satisfies ( !Sn); see 2.7 and [8, 1.3]. □

Now we can prove Theorem 1.2, the result advertised in the introduction:

Proof of Theorem 1.2. The result is an immediate consequence of Corollary 4.4 since M is
Tor-rigid by a result of Lichtenbaum; see 2.1(i). □

Next we recall an example given in [10] concerning the Second Rigidity Theorem; see
Theorem 1.1. The presentation we provide for M ⊗R N in Example 4.5 has not been given in
[10] and appears to be new; here we compute it by using [14, 21].

Example 4.5. ([10]) Let R = C[|x,y,z,w]]/(xy), M = Tr(R/p), where p= (y,z,w) ∈ Spec(R),
and let N = R/(x). Then M is not reflexive, but since pd(M) < ∞, we have that N is reflexive
by Theorem 1.1. Moreover, M ⊗R N is reflexive since it is the second syzygy of the cokernel
of the rightmost matrix in the following exact sequence:

R⊕4 R⊕3 R⊕3 R⊕4

M⊗R N

0 0

!

"
x 0 0 w
0 x 0 y
0 0 x z

#

$

!

"
0 yz −y2

−yz 0 yz
y2 −yw 0

#

$

!

%%"

x 0 0
0 x 0
0 0 x
w y z

#

&&$

□

Next we point out that the conclusion of Theorem 1.2 is sharp:

Remark 4.6. In Example 4.5, it follows, as pd(M) < ∞, that TorR
i (M,N)p = 0 for all i ≫ 0

and for all p ∈ Spec(R), but M is not reflexive. In other words, the torsion hypothesis (iv) of
Theorem 3.1 is not enough to obtain the conclusion of Theorem 1.2, in general.
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We can easily see that there is a height-one prime ideal q of R in Example 4.5 such that
pdRq

(Nq) = ∞. For that note the minimal free resolution of N is given as:

. . .
y
"" R x

"" R
y
"" R x

"" R "" N "" 0.

Localizing this resolution at the height-one prime ideal q= (x,y) of R, we obtain the minimal
free resolution of Nq over Rq:

. . .
y
"" Rq

x
"" Rq

y
"" Rq

x
"" Rq

"" Nq
"" 0.

This clearly shows that pdRq
(Nq) = ∞. □

An R-module M is said to be 2-Tor-rigid provided, whenever TorR
1 (M,N) = 0 =TorR

2 (M,N)
for some R-module N, we have TorR

3 (M,N) = 0. We finish this section by noting that the
conclusion of Theorem 3.1 may fail if the module M is 2-Tor-rigid instead of Tor-rigid:

Example 4.7. Let R = C[|x,y]]/(xy), M = R/(x) and N = R/(x2). Note that each R-module
is 2-Tor-rigid [22, 1.9]. Note also that M ⊗R N ∼= M and hence M ⊗R N satisfies (!Sv) for each
v ≥ 0. Also, since R is reduced, TorR

i (M,N) is torsion for each i ≥ 1. However it is easy to see
that N does not satisfy ( !S1), TorR

1 (M,N) ∕= 0, and M is not Tor-rigid; see [17, page 164]. □
It is worth noting that we do not know an example similar to Example 4.7 when n ≥ 2. More

precisely, we ask (cf. Example 4.5):

Question 4.8. Let R be a hypersurface ring, and let M and N be nonzero R-modules. Assume
TorR

i (M,N) is torsion for all i ≫ 0. If M⊗R N is reflexive, then must M or N be reflexive? □
Notice, if the ring R in Question 4.8 is a domain (e.g., an isolated singularity of dimension

at least two), then it follows from 2.7 that both M and N are reflexive; see [8, 1.3].
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