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Abstract. In recent work, for a triangulated category T , the author introduced
a topological space Spec△(T ) which we call the triangular spectrum of T as a
tensor-free analog of the Balmer spectrum for a tensor triangulated category. In
this paper, we use the triangular spectrum to reconstruct a noetherian scheme X
from its perfect derived category Dpf(X). As an application, we give an alterna-
tive proof of the Bondal-Orlov-Ballard reconstruction theorem in the special case
(when both varieties have ample or anti-ample canonical bundles). Moreover, we
define the structure sheaf on Spec△(T ) and compare the triangular spectrum and
the Balmer spectrum as ringed spaces.

1. Introduction

In this paper, we consider the reconstruction problem of noetherian schemes from
their perfect derived categories, asking whether a triangle equivalence between per-
fect derived categories Dpf(X) ∼= Dpf(Y ) implies an isomorphism X ∼= Y of noether-
ian schemes? Many authors have studied this kind of reconstruction problem well;
see [1, 2, 9, 11, 25]. It is well-known that affine noetherian schemes are reconstructed
using the triangulated category structures from their perfect derived categories. By
contrast, this reconstruction problem fails for non-affine noetherian schemes in gen-
eral. For example, Mukai [21] proved that an abelian A and its dual A∨ (which are
not isomorphic in general) have the equivalent perfect derived categories.

Therefore, the triangulated category structure is insufficient for reconstructing
X from Dpf(X). Balmer proved that X can be reconstructed from Dpf(X) using
the tensor triangulated category structure as follows. For an essentially small tensor
triangulated category (T ,⊗,1), Balmer defined the ringed space Spec⊗(T ), which we
call the Balmer spectrum of (T ,⊗,1). In [3], he proved that there is an isomorphism

X ∼= Spec⊗(D
pf(X))

for the tensor triangulated category (Dpf(X),⊗L
OX

,OX). This isomorphism shows

that X is reconstructed from Dpf(X) using the tensor triangulated category struc-
ture. Balmer spectra allow us to study tensor triangulated categories via algebro-
geometric methods. This theory is called tensor triangular geometry and has been
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actively studied in various fields of mathematics. Recently, the author [19] intro-
duced the topological space Spec△(T ) for a triangulated category T to generalize
tensor triangular geometry to arbitrary essentially small triangulated categories. We
call Spec△(T ) the triangular spectrum of T . For the perfect derived category Dpf(X)
of a noetherian scheme X, it is shown in [19] that there is an immersion

X ↩→ Spec△(D
pf(X))

of topological spaces.
One of the most famous reconstruction results is due to Bondal-Orlov [9] and

Ballard [1], which states that for Gorenstein projective varieties X1 and X2 over a
field k with ample or anti-ample canonical bundles, X1 and X2 are isomorphic as
varieties whenever their perfect derived categories are equivalent as k-linear trian-
gulated categories. Although they just assume either X1 or X2 has an ample or
anti-ample canonical bundle, we call above the Bondal-Orlov-Ballard reconstruction
theorem. As an application of triangular spectra, we prove the following result,
which generalizes the Bondal-Orlov-Ballard reconstruction theorem.

Theorem 1.1. (Theorem 3.3). Let X1 and X2 be noetherian schemes, and Φ :

Dpf(X1)
∼=−→ Dpf(X2) be a triangle equivalence. Assume there is a line bundle Li on

Xi for i = 1, 2 satisfying the following conditions:

(i) Li is ample or anti-ample for i = 1, 2.
(ii) There is an isomorphism

Φ(F ⊗L
OX1

L1) ∼= Φ(F )⊗L
OX2

L2

for any F ∈ Dpf(X1).

Then (X1)red and (X2)red are isomorphic as schemes.

Actually, the reconstruction of underlying topological spaces essentially appeared in
[13]. Although they use the result of Kollár-Lieblich-Olsson-Sawin [17] to reconstruct
structure sheaves, we use the center of a triangulated category, which plays an
important role in this paper.

So far, we have considered the triangular spectrum Spec△(T ) as a topological
space. In this paper, we will introduce the structure sheaf on Spec△(T ) for a trian-
gulated category T , which makes Spec△(T ) a ringed space. The following second
main theorem allows us to compare the Balmer spectrum and the triangular spec-
trum as ringed spaces:

Theorem 1.2. (Theorem 4.6). Let (T ,⊗,1) be an idempotent complete, rigid, and
locally monogenic tensor triangulated category. Assume further that Spec⊗(T ) is
noetherian.

(1) There is an inclusion Spec⊗(T ) ⊆ Spec△(T ).
(2) There is a morphism

i : Spec⊗(T )red → Spec△(T )

of ringed spaces satisfying the following conditions:
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(a) The map of underlying topological spaces is the inclusion Spec⊗(T ) ⊆
Spec△(T ).

(b) i is an open immersion of ringed spaces whenever Spec⊗(T ) is an open subset
of Spec△(T ).

(c) i is an isomorphism of ringed spaces if T is classically generated by 1.

Here, a tensor triangulated category (T ,⊗,1) is said to be rigid if it is closed and
every object is strongly dualizable. It is said to be locally monogenic if it is locally
classically generated by the unit object; see Section 3 for details.

The assumptions in Theorem 1.2 are satisfied for the perfect derived categories of
noetherian schemes. Applying this theorem to such tensor triangulated categories,
we obtain the following result:

Theorem 1.3. (Corollaries 4.7, 4.9, and 4.10).

(1) Let X be a noetherian quasi-affine scheme. Then there is an isomorphism

Spec△(D
pf(X)) ∼= Xred

of ringed spaces.
(2) Let P1 be the projective line over a field k. Then there is an isomorphism

Spec△(D
pf(P1)) ∼= P1 ⊔

󰀣
󰁊

n∈Z

Spec(k)

󰀤

of ringed spaces.
(3) Let E be an elliptic curve over an algebraically closed field. Then there is an

isomorphism

Spec△(D
pf(E)) ∼= E ⊔

󰀳

󰁃
󰁊

(r,d)∈I

Er,d

󰀴

󰁄

of ringed spaces. Here, I := {(r, d) ∈ Z2 | r > 0, gcd(r, d) = 1}, and Er,d is a
copy of E for each (r, d) ∈ I.

Matsui [19] and Hirano-Ouchi [13] proved that there are homeomorphisms between
the underlying topological spaces of ringed spaces in Theorem 1.3(1),(2) and The-
orem 1.3(3), respectively. Therefore, Theorem 1.3 extends their result to isomor-
phisms of ringed spaces. Moreover, Theorem 1.3(1),(3) shows that reduced quasi-
affine schemes and elliptic curves are reconstructed from their perfect derived cate-
gories using only triangulated category structure (without tensor structure).

This paper is organized as follows. In Section 2, we give the definitions of the
center and the triangular spectra of a triangulated category, which play a central
role throughout this paper. In Section 3, we prove Theorem 1.1 and give its ap-
plications, including the Bondal-Orlov-Ballard reconstruction theorem. In Section
4, we introduce the structure sheaf on the triangular spectrum and prove Theorem
1.2. We apply this result to the perfect derived categories of noetherian schemes
and deduce Theorem 1.3.
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2. Preliminaries

In this section, we recall basic definitions and properties for later use. We begin
with our convention.

Convention 2.1. (1) Throughout this paper, we assume that all triangulated cat-
egories are essentially small and that all subcategories are full.

Let T be a triangulated category. A thick subcategory of T is a subcategory
closed under direct summands, shifts, and extensions. The set Th(T ) of all
thick subcategories forms a lattice with respect to the inclusion relation. For
M ∈ T , denote by 〈M〉 the smallest thick subcategory of T containing M .

(2) For a noetherian scheme X, a complex F of OX-modules is said to be perfect
if, for any x ∈ X, there is an open neighborhood U ⊆ X of x such that the
restriction F |U is quasi-isomorphic to a bounded complex of locally free sheaves
of finite rank. Denote by Dpf(X) the derived category of perfect complexes on
X. We call it the perfect derived category of X.

2.1. Center of triangulated categories. We recall the definition and basic prop-
erties of the center of a triangulated category; see [18] for details.

Definition 2.2. Let T be a triangulated category.

(1) The center Z(T ) of T is the set of natural transformations η : idT → idT
with η[1] = [1]η. The composition of natural transformations makes Z(T ) a
commutative ring.

(2) We say that an element η ∈ Z(T ) is locally nilpotent if ηM is a nilpotent element
of the endomorphism ring EndT (M) for eachM ∈ T . We shall denote by Z(T )lnil
the ideal of Z(T ) consisting of locally nilpotent elements and by Z(T )lred :=
Z(T )/Z(T )lnil the quotient ring.

Let Φ : T → T ′ be an exact functor between triangulated categories. It seems
to be not known whether Φ induces a morphism between Z(T )lred and Z(T ′)lred in
general. Let us give several functoriality results of Z(−)lred under certain functors
following [18].

We say that an exact functor Φ : T → T ′ is dense if, for any M ′ ∈ T ′, there are
M ∈ T and N ′ ∈ T ′ such that Φ(M) ∼= M ′ ⊕ N ′. For example, the idempotent
completion functor ι : T → T 󰂑 of T is fully faithful and dense; see [8].

Lemma 2.3. Let Φ : T → T ′ be a fully faithful dense exact functor. Then there

is an isomorphism Φ∗ : Z(T ′)
∼=→ Z(T ), where Φ∗(η)M = Φ−1(ηΦ(M)) for M ∈ T .

Moreover, this isomorphism induces an isomorphism Φ∗ : Z(T ′)lred
∼=→ Z(T )lred.

Proof. We note that for any object M ′ ∈ T ′, there is an object M ∈ T and an
isomorphism M ′ ⊕M ′[1] ∼= Φ(M); see [3, (3.2) in the proof of Proposition 3.13].

As Φ : T → T ′ is a fully faithful exact functor, it induces a homomorphism Φ∗ :
Z(T ′) → Z(T ) by [18, Proposition 2.3(1)]. First, we prove that this homomorphism
is an isomorphism. Let η ∈ Z(T ′) with Φ∗(η) = 0. For any M ′ ∈ T ′, take an
object M ∈ T and an isomorphism M ′⊕M ′[1] ∼= Φ(M). Then we obtain Φ∗(η)M =
Φ−1(ηΦ(M)) ∼= Φ−1(ηM ′)⊕Φ−1(ηM ′)[1]. Therefore, Φ∗(η)M = 0 implies Φ−1(ηM ′) = 0
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and hence ηM ′ = 0. This shows that Φ∗ : Z(T ′) → Z(T ) is injective. To show that
Φ∗ : Z(T ′) → Z(T ) is surjective, fix an element δ ∈ Z(T ) and construct η ∈ Z(T ′)
with Φ∗(η) = δ. For any M ′ ∈ T ′, take an object M ∈ T and an isomorphism

ϕ : Φ(M)
∼=−→ M ′ ⊕ M ′[1]. Then we define the morphism ηM ′ : M ′ → M ′ as the

composition

M ′ (
1
0 )→ M ′ ⊕M ′[1]

ϕ−1

−−→ Φ(M)
Φ(δM )−−−→ Φ(M)

ϕ−→ M ′ ⊕M ′[1]
( 1 0 )→ M ′.

This morphism ηM ′ does not depend on the choices of M and ϕ. Indeed, take an

object N ∈ T and an isomorphism ψ : Φ(N)
∼=−→ M ′⊕M ′[1]. Since Φ is full, there is

a morphism f : M → N in T such that Φ(f) = ψ−1ϕ. Then we have the equalities

ϕΦ(δM)ϕ−1 = ψΦ(f)Φ(δM)ϕ−1 = ψΦ(δN)Φ(f)ϕ
−1 = ψΦ(δN)ψ

−1.

For this reason, ηM ′ is well-defined. For a morphism g : M ′ → N ′ in T ′, we prove

gηM ′ = ηN ′g. Take objects M,N ∈ T and isomorphisms ϕ : Φ(M)
∼=−→ M ′ ⊕M ′[1],

ψ : Φ(N)
∼=−→ N ′ ⊕N ′[1] in T ′. Since Φ is full, there is a morphism f : M → N such

that Φ(f) = ψ−1
󰀓

g 0
0 g[1]

󰀔
ϕ. Then we get the equalities

gηM ′ = g ( 1 0 )ϕΦ(δM)ϕ−1 ( 1
0 )

= ( 1 0 )
󰀓

g 0
0 g[1]

󰀔
ϕΦ(δM)ϕ−1 ( 1

0 )

= ( 1 0 )ψΦ(f)Φ(δM)ϕ−1 ( 1
0 )

= ( 1 0 )ψΦ(δN)Φ(f)ϕ
−1 ( 1

0 )

= ( 1 0 )ψΦ(δN)ψ
−1

󰀓
g 0
0 g[1]

󰀔
( 1
0 )

= ( 1 0 )ψΦ(δN)ψ
−1 ( 1

0 ) g = ηN ′g.

This shows that η : idT ′ → idT ′ is a natural transformation. Moreover, one can
easily see from the definition that η[1] = [1]η holds and hence η ∈ Z(T ′). Finally, we
will check the equality Φ∗(η) = δ. For an object M ∈ T , we can take the canonical
isomorphism Φ(M ⊕M [1]) ∼= Φ(M)⊕Φ(M)[1]. Using this isomorphism, we have a
commutative diagram

Φ(M)
( 10 ) 󰈣󰈣

Φ(δM )
󰈃󰈃

Φ(M)⊕ Φ(M)[1] ∼=
󰀕
Φ(δM ) 0

0 Φ(δM )[1]

󰀖

󰈃󰈃

Φ(M ⊕M [1])

Φ(δM⊕M [1])

󰈃󰈃

Φ(M) Φ(M)⊕ Φ(M)[1]
( 1 0 )
󰉣󰉣 ∼= Φ(M ⊕M [1])

and this means that ηΦ(M) = Φ(δM). Therefore, Φ∗(η)M = Φ−1(ηΦ(M)) = δM . Thus,
we conclude that Φ∗(η) = δ.

We finish the proof by checking that the first isomorphism induces the second one.
From the first isomorphism, the induced homomorphism Φ∗ : Z(T ′)lred ↠ Z(T )lred is
surjective. Pick an element η ∈ Z(T ′) with Φ∗(η) ∈ Z(T )lnil. For any object M ∈ T ,
there is an integer n > 0 such that Φ−1(ηnΦ(M)) = Φ−1(ηΦ(M))

n = Φ∗(η)nM = 0 as
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Φ∗(η) is locally nilpotent. Hence ηnΦ(M) = 0. Because each object M ′ ∈ T ′ is a direct

summand of Φ(M) for some M ∈ T , we get η ∈ Z(T ′)lred. This shows the injectivity
of Φ∗ : Z(T ′)lred ↠ Z(T )lred. 󰃈

For thick subcategories U ⊆ V of T , there is a unique exact functor QV/U : T /U →
T /V such that QV/U ◦QU = QV , where QU : T → T /U and QV : T → T /V are the
canonical functors.

Lemma 2.4. Let U ⊆ V be thick subcategories of T . Then the canonical functor
QV/U : T /U → T /V induces a ring homomorphism (QV/U)∗ : Z(T /U) → Z(T /V)
where (QV/U)∗(η)QV (M) = QV/U(ηQU (M)) for M ∈ T . Moreover, this homomorphism

induces a homomorphism (QV/U)∗ : Z(T /U)lred → Z(T /V)lred.

Proof. It follows from [27, Proposition 2.3.1] that V/U is a thick subcategory of T /U
and that QV/U induces a triangle equivalence

Φ : (T /U)/(V/U)
∼=−→ T /V

such that Φ ◦Q = QV/U , where Q : T /U → (T /U)/(V/U) is the canonical functor.
By Lemma 2.3 and [18, Proposition 2.3(2)], we obtain the homomorphism

(QV/U)∗ : Z(T /U) Q∗−→ Z((T /U)/(V/U)) (Φ∗)−1

−−−−→∼=
Z(T /V).

The second statement is clear from the description (QV/U)∗(η)QV (M) = QV/U(ηQU (M)).
󰃈

2.2. Spectra of triangulated categories. In this subsection, let us recall the two
kinds of spectra introduced by Balmer [3] and Matsui [19].

Let T be a triangulated category. We set

Z(E) := {X ∈ Th(T ) | X ∩ E = ∅}

for a subcategory E of T . Then we can easily see the following properties:

(i) Z(T ) = ∅ and Z(∅) = Th(T ).
(ii)

󰁗
i∈I Z(Ei) = Z(

󰁖
i∈I Ei).

(iii) Z(E) ∪ Z(E ′) = Z(E ⊕ E ′), where E ⊕ E ′ := {M ⊕M ′ | M ∈ E ,M ′ ∈ E ′}.
Therefore, we can define the topology on Th(T ) whose closed subsets are of the
form Z(E) for some E ⊆ T .

A tensor triangulated category is a triple (T ,⊗,1) consisting of a triangulated cat-
egory T together with a symmetric monoidal structure (⊗,1) such that the bifunctor
⊗ : T × T → T is exact in each variable.

Definition 2.5. ([3, Definition 2.1]). Let (T ,⊗,1) be a tensor triangulated category.
A proper thick subcategory P ⊊ T is said to be a prime thick ideal if it satisfies the
following conditions:

• (ideal) M ⊗N ∈ P holds for any M ∈ T and N ∈ P ,
• (prime) M ⊗N ∈ P implies M ∈ P or N ∈ P .
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Denote by Spec⊗(T ) the set of prime thick ideals of T together with the induced
topology of Th(T ). We call Spec⊗(T ) the Balmer spectrum or the tensor-triangular
spectrum of (T ,⊗,1).

Balmer [3] also defined the structure sheaf on Spec⊗(T ). For an open subset
U ⊆ Spec⊗(T ), set T U :=

󰁗
P∈U P . We define the tensor triangulated category

T (U) by

T (U) :=
󰀃
T /T U

󰀄󰂑
.

Denote by 1U the image of 1 under the canonical functor T → T (U).

Definition 2.6. ([3, Definition 6.1]). We denote by O⊗,T the sheafification of the
presheaf Op

⊗,T of commutative rings given by the assignment

U 󰀁→ Op
⊗,T (U) := EndT (U)(1U).

We simply write Spec⊗(T ) for the ringed space (Spec⊗(T ),O⊗,T ).

Using the Balmer spectrum, Balmer [3] proved that any noetherian scheme X
could be reconstructed from the tensor triangulated category (Dpf(X),⊗L

OX
,OX).

Theorem 2.7. ([3, Theorem 6.3(a)]1). For a noetherian scheme X, there is an
isomorphism

SX : X
∼=−→ Spec⊗(D

pf(X))

of ringed spaces, where the map of underlying topological spaces is given by

x 󰀁→ SX(x) := {F ∈ Dpf(X) | Fx
∼= 0 in Dpf(OX,x)}.

Next, let us recall the triangular spectrum of a triangulated category of T .

Definition 2.8. ([19, Definitions 2.2 and 2.4]). Let T be a triangulated category. A
proper thick subcategory P ⊊ T is called a prime thick subcategory if the partially
ordered set {X ∈ Th(T ) | P ⊊ X} has the smallest element. Denote by Spec△(T )
the set of prime thick subcategories of T together with the induced topology of
Th(T ). We call Spec△(T ) the triangular spectrum of T .

Remark 2.9. In [19], we call P a prime thick subcategory if {X ∈ Th(T ) | P ⊊ X}
has a unique minimal element. However, correctly it should have the smallest
element as above. Actually, the proofs in [19] are done using the above defini-
tion (“unique minimal element in [19, Lemma 2.15 and Proposition 4.7] should be
changed to “smallest element). Therefore, we changed the definition of a prime thick
subcategory.

Let Φ : T → T ′ be an exact functor. Since Φ−1(X ) := {M ∈ T | Φ(M) ∈ T ′}
is a thick subcategory of T for each thick subcategory X ⊆ T ′, we have an order-
preserving map

Φ∗ : Th(T ′) → Th(T ), X 󰀁→ Φ−1(X ).

This map restricts to continuous maps between triangular spectra for fully faithful
dense exact functors and quotient functors.

1This theorem has been generalized to a quasi-compact and quasi-separated scheme, see [6,
Theorem 54] and [10, Theorem 9.5].
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Lemma 2.10. ([19, Proposition 2.11]). Let Φ : T → T ′ be a fully faithful dense
exact functor. Then the map Φ∗ : Th(T ′) → Th(T ) restricts to a homeomorphism

Φ∗ : Spec△(T ′)
∼=→ Spec△(T ).

Lemma 2.11. ([19, Proposition 2.9]). Let T be a triangulated category and U be its
thick subcategory. Denote by Q : T → T /K the canonical functor. Then the map
Q∗ : Th(T /K) → Th(T ) restricts to an immersion

Q∗ : Spec△(T /K) ↩→ Spec△(T ).

of topological spaces whose image is {P ∈ Spec△(T ) | K ⊆ P}.

The following theorem is one of the main results in [19], which is some sort of a
generalization of Theorem 2.7.

Theorem 2.12. Let X be a noetherian scheme.

(1) Let P be a thick ideal of Dpf(X). Then P is a prime thick subcategory if and
only if P is a prime thick ideal if and only if P = SX(x) for some x ∈ X.

(2) We have an immersion

SX : X ↩→ Spec△(D
pf(X)), x 󰀁→ SX(x).

of topological spaces whose image is Spec⊗(D
pf(X)).

Remark 2.13. We will see in Corollary 4.7 that the above immersion SX : X ↩→
Spec△(D

pf(X)) follows from more general result Theorem 4.6.

From the definition, it is quite difficult to determine the topological space
Spec△(D

pf(X)) for a given noetherian scheme X. For special cases, triangular spec-
tra are determined as follows.

Proposition 2.14. (1) ([19, Corollary 2.17(1)]). If X is a quasi-affine noetherian
scheme, then there is a homeomorphism

Spec△(D
pf(X)) ∼= X.

(2) ([19, Example 4.10]). Let P1 be the projective line over a field. Then there is a
homeomorphism

Spec△(D
pf(P1)) ∼= P1 ⊔ Z,

where Z is considered as the discrete topological space.
(3) ([13, Theorem 4.11]). Let E be an elliptic curve over a field. Then there is a

homeomorphism

Spec△(D
pf(E)) ∼= E ⊔

󰀳

󰁃
󰁊

(r,d)∈I

Er,d

󰀴

󰁄 .

Here, I := {(r, d) ∈ Z2 | r > 0, gcd(r, d) = 1} and Er,d is a copy of E for each
(r, d) ∈ I.
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3. Reconstruction of schemes

In this section, we discuss the reconstruction of a noetherian scheme X from
the triangulated category Dpf(X). Reconstruction of underlying topological spaces
has been discussed in [13, 19] in terms of the triangular spectrum of Dpf(X). To
reconstruct the structure sheaf, centers of triangulated categories play a crucial role.

We recall that a tensor triangulated category (T ,⊗,1) is rigid if it is closed, i.e.,
the exact functor M ⊗ − : T → T has a right adjoint [M,−] : T → T for each
M ∈ T and such that every object M is strongly dualizable, i.e., the canonical map

[M,1]⊗N → [M,N ]

is an isomorphism for each N ∈ T ; see [14] for details. If T is rigid, then so is T (U)
for any open subset U ⊆ Spec⊗(T ) by [4, Proposition 2.15].

We say that the tensor triangulated category (T ,⊗,1) is monogenic if T is clas-
sically generated by 1, i.e., T = 〈1〉. We say that T is locally monogenic if, for
any prime thick ideal P ∈ Spec⊗(T ), there is a quasi-compact open neighborhood
U ⊆ Spec⊗(T ) of P such that T (U) is monogenic.

We begin with stating the following general result for specific tensor triangulated
categories whose proof is taken from [24, Lemma 4.10].

Proposition 3.1. Let (T ,⊗,1) be an idempotent complete, rigid, locally monogenic
tensor triangulated category. Then the evaluation at 1 induces an isomorphism

Z(T )lred ∼= EndT (1)red.

Proof. As Spec⊗(T ) is a spectral space, there are quasi-compact open covering
U1, U2, . . . , Un of Spec⊗(T ) such that T (Ui) = 〈1Ui

〉 for i = 1, 2, . . . , n.
Let α : Z(T ) → EndT (1), η 󰀁→ η1 be the evaluation at 1. Since α has a right

inverse EndT (1) → Z(T ),φ 󰀁→ φ ⊗ (−), the homomorphism α is surjective. There-
fore, it suffices to show that the induced homomorphism α : Z(T )lred → EndT (1)red
is injective. To this end, let us prove η ∈ Z(T )lnil for each η ∈ Z(T ) with α(η) = 0,
i.e., η1 = 0. We proceed by induction on n.

First assume n = 1, i.e., T = 〈1〉. We prove that ηM is nilpotent for any M ∈ T .
We consider the subcategory X ⊆ T consisting of objects M ∈ T with ηM nilpotent.
Then X contains 1 as η1 = 0. In addition, X is a thick subcategory. Indeed, it is
clear that X is closed under direct summands and shifts. Take an exact triangle

L
f−→ M

g−→ N → L[1] in T with L,N ∈ X . Then there is an integer l ≥ 1 such that
ηlL = 0 and ηlN = 0. From the naturality of ηl, the equality gηlM = ηlNg = 0 holds.

Thus, ηlM factors as ηlM : M
a−→ L

f−→ M . Again using the naturality of ηl, we get
η2lM = ηlMηlM = ηlMfa = fηlLa = 0. As a result, M ∈ X follows. Therefore, X is
thick and so X = 〈1〉 = T . This means that η is locally nilpotent.

Next, assume that n > 1 and set V = U2 ∪ U3 ∪ · · ·Un. Assume further that the
evaluations at the unit objects induce isomorphisms

α : Z(T (U1))lred
∼=−→ EndT (U1)(1U1)red, α : Z(T (V ))lred

∼=−→ EndT (V )(1V )red.
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Here, we note that there is a homeomorphism f : Spec⊗(T (V ))
∼=−→ V such that

T (V )(f−1(Ui)) ∼= T (Ui) = 〈1Ui
〉 for i = 2, 3, . . . , n; see [7, Proposition 1.11] and [6,

Constructions 24 and 29]. Hence we can apply the induction hypothesis to T (V ).
One can easily verify that the canonical functors Q : T → T /T U1 and ι :

T /T U1 → T (U1) induce a commutative diagram

Z(T )lred
Q∗ 󰈣󰈣

α
󰈃󰈃

Z(T /T U1)lred

α
󰈃󰈃

Z(T (U1))lred

α ∼=
󰈃󰈃

ι∗

∼=
󰉣󰉣

EndT (1)red
Q
󰈣󰈣 EndT /T U1 (Q(1))red

ι

∼=
󰈣󰈣 EndT (U1)(1U1)red,

where the evaluations at the unit objects induce the vertical arrows. From this
diagram, η1 = 0 yields Q∗(η) ∈ Z(T /T U1)lnil. For an object M ∈ T , there is an
integer l ≥ 1 such that Q(ηlM) = Q∗(η)

l
Q(M) = 0. Accordingly, ηlM factors some

N ∈ T U1 . Then η
(d+1)l
M factors ηdlN for any integer d ≥ 1.

For the canonical functors Q′ : T → T /T V and ι′ : T /T V → T (V ), the same
argument as above shows that Q′

∗(η) ∈ Z(T /T V )lnil. Here we use the isomorphism

α : Z(T (V ))lred
∼=−→ EndT (V )(1V )red which is our induction hypothesis. In particular,

Q′(ηdlN) = Q′
∗(η)

dl
Q′(N) = 0 for some d ≥ 1. It follows from [7, Theorem 7.1] that the

functor Q′ restricts to a fully faithful functor

Q′ : T U1 → (T /T V )U1

and hence Q′(ηdlN) = 0 implies ηdlN = 0. Then η
(d+1)l
M = 0 holds as η

(d+1)l
M factors ηdlN .

As a result, we conclude that η ∈ Z(T )lnil. 󰃈
Let X be a noetherian scheme and U ⊆ X be an open subset with Z := X \ U .

Then [2, Theorem 2.13] shows that the restriction functor (−)|U : Dpf(X) → Dpf(U)
induces a triangle equivalence

󰀓
Dpf(X)/Dpf

Z (X)
󰀔󰂑 ∼= Dpf(U)

of tensor triangulated categories, where Dpf
Z (X) = {F ∈ Dpf(X) | F |U∼= 0} =󰁗

x∈U SX(x). Therefore, the left-hand side is Dpf(X)(SX(U)). Applying Proposition
3.1 to T = Dpf(X), the following result is recovered.

Corollary 3.2. ([2, Proposition 8.1] and [24, Lemma 4.10]). For a noetherian
scheme X, there is an isomorphism

Z(Dpf(X))lred ∼= Γ(X,OX)red.

Proof. Dpf(X) is idempotent complete because it is realized as the full subcategory
of compact objects of Dqc(ModOX). Also, it is rigid by [4, Proposition 4.1]. For any
affine scheme U , it holds that Dpf(U) = 〈OU〉. It follows from Theorem 2.7 and [2,
Theorem 2.13] that the tensor triangulated category Dpf(X) is locally monogenic.
Thus, we get isomorphisms

Z(Dpf(X))lred ∼= EndDpf(X)(OX)red ∼= Γ(X,OX)red
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of commutative rings from Proposition 3.1. 󰃈

Now we state and prove the first main result in this paper about the reconstruction
of a noetherian scheme from the perfect derived category.

Theorem 3.3. Let X1 and X2 be noetherian schemes and Φ : Dpf(X1)
∼=−→ Dpf(X2)

be a triangle equivalence. Assume that there is a line bundle Li on Xi for i = 1, 2
satisfying the following conditions:

(i) Li is ample or anti-ample for i = 1, 2.
(ii) There is an isomorphism

Φ(F ⊗L
OX1

L1) ∼= Φ(F )⊗L
OX2

L2

for any F ∈ Dpf(X1).

Then (X1)red and (X2)red are isomorphic as schemes.

Proof. Let us first remark that as Li or L⊗−1
i is ample, {L⊗m

i | m ∈ Z} generates
Dpf(Xi) by [22, Lemma 2.2] and [23, Example 1.10].

For i = 1, 2, denote by SpecLi
△ (Dpf(Xi)) the subset of Spec△(D

pf(Xi)) consisting

of prime thick subcategories P with P ⊗L
OXi

Li := {F ⊗L
OXi

Li | F ∈ P} = P .

Then the homeomorphism Φ∗ : Spec△(D
pf(X2))

∼=−→ Spec△(D
pf(X1)) restricts to the

homeomorphism Φ∗ : SpecL2
△ (Dpf(X2))

∼=−→ SpecL1
△ (Dpf(X1)) by (ii). On the other

hand, by the first remark, {L⊗n
i | n ∈ Z} generates Dpf(Xi) and hence Theorem

2.12(1) implies SpecLi
△ (Dpf(X1)) = Spec⊗(D

pf(Xi)). From Theorem 2.7, we obtain

a homeomorphism SXi
: Xi

∼=−→ Spec⊗(D
pf(X1)) = SpecLi

△ (Dpf(Xi)). Thus, we get a
homeomorphism

f : X2

SX2−−→ SpecL2
△ (Dpf(X2))

Φ∗
−→ SpecL1

△ (Dpf(X1))
S−1
X1−−→ X1.

The construction of this map yields Φ(SX1(f(x2))) = SX2(x2) for any x2 ∈ X2.
For an open subset U ⊆ X2 with Z = X2 \ U , one has

Φ(Dpf
f (Z )(X1)) = Φ

󰀳

󰁃
󰁟

x1∈f(Z)

SX1(x1)

󰀴

󰁄 =
󰁟

x1∈f(Z)

Φ (SX1(x1)) =
󰁟

x2∈Z

SX2(x2) = Dpf
Z (X2).

Therefore, the triangle equivalence Φ : Dpf(X1)
∼=−→ Dpf(X2) induces a triangle equiv-

alence

Φ : Dpf(X1)/D
pf
f (Z )(X1)

∼=−→ Dpf(X2)/D
pf
Z (X2).

Taking idempotent completion and Z(−)lred, we obtain an isomorphism

Γ(f(U),OX1)red
∼= Γ(U,OX2)red

by [2, Theorem 2.13] and Corollary 3.2. As we can easily see that this isomorphism
is compatible with the restriction of open subsets, we get an isomorphism (X2)red ∼=
(X1)red of schemes. 󰃈
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This result has several applications. The first one is the following reconstruction
theorem which is well-known at least for the affine case.

Corollary 3.4. Let X1 and X2 be noetherian quasi-affine schemes. If there is a tri-

angle equivalence Φ : Dpf(X1)
∼=−→ Dpf(X2), then (X1)red and (X2)red are isomorphic

as schemes.

Proof. Take Li to be OXi
. Then OXi

is an ample line bundle as Xi is quasi-affine.
Moreover, the isomorphism

Φ(F ⊗L
OX1

OX1)
∼= Φ(F )⊗L

OX2
OX2

obviously holds for each F ∈ Dpf(X1); hence, the result follows by Theorem 3.3. 󰃈
Another application of Theorem 3.3 is to recover the famous result by Bondal-

Orlov [9] and Ballard [1].

Corollary 3.5. ([9, Theorem 2.5], [1, Theorem 1]). Let Xi be a Gorenstein projec-
tive scheme over a field k with ample or anti-ample canonical bundle ωXi

for i = 1, 2.

If there is a k-linear triangle equivalence Φ : Dpf(X1)
∼=−→ Dpf(X2), then (X1)red and

(X2)red are isomorphic as schemes.

Proof. Take Li to be ωXi
. Then the assumption (i) is satisfied. Recall that a Serre

functor SXi
: Dpf(Xi) → Dpf(Xi) on Dpf(Xi) is a triangle equivalence such that there

is a natural isomorphism

HomDpf(Xi)(F,G) ∼= HomDpf(Xi)(G,SXi
(F ))∗

for any F,G ∈ Dpf(Xi). Here (−)∗ stands for the k-dual functor. It follows from
[1, Lemma 6.6] that SXi

∼= (−)⊗L
OXi

ωXi
[− dimXi] and from [15, Lemma 1.30] that

SX2 ◦ Φ ∼= Φ ◦ SX1 . Therefore, the assumption (ii) follows. Applying Theorem 3.3,
we get an isomorphism between (X1)red and (X2)red. 󰃈

4. Triangular spectra as ringed spaces

One of the key ingredients of proof of Theorem 3.3 is the isomorphisms

Z

󰀳

󰁃
󰀣
Dpf(X)/

󰁟

x∈U

SX(x)

󰀤󰂑
󰀴

󰁄

lred

∼= Z
󰀃
Dpf(U)

󰀄
lred

∼= Γ(U,OX)red

for an open subset U ⊆ X, which is a consequence of [2, Theorem 2.13] and Corol-
lary 3.2. Motivated by these isomorphisms, we define the structure sheaf on the
triangular spectrum for a triangulated category.

Let T be a triangulated category. For an open subset U ⊆ Spec△(T ), we set

T U :=
󰁟

P∈U

P , T (U) :=
󰀃
T /T U

󰀄󰂑
.

By composing the quotient functor QU : T → T /T U and the idempotent completion
functor ιU : T /T U → T (U), we have a natural functor resU : T → T (U). Thanks
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to Lemmas 2.3 and 2.4, the functor resU induces a homomorphism

(resU)∗ : Z(T )lred
(QU )∗−−−→ Z(T /T U)lred

((ιU )∗)−1

−−−−−→∼=
Z(T (U))lred.

Let U ⊆ V ⊆ Spec△(T ) be open subsets. Then the universal properties of the

Verdier quotient and the idempotent completion shows that the inclusion T V ⊆ T U

induces a unique exact functor

resV,U : T (V ) → T (U)

such that resV,U ◦resV = resU . Again using Lemmas 2.3 and 2.4, this functor induces
a homomorphism

(resV,U)∗ : Z(T (V ))lred → Z(T (U))lred.

Furthermore, we have the equality (resW,V )∗ ◦ (resV,U)∗ = (resW,U)∗ for three open
subsets U ⊆ V ⊆ W ⊆ Spec△(T ).

Definition 4.1. Let T be a triangulated category. We define the sheaf O△,T of
commutative rings on Spec△(T ) by the sheafification of the presheaf Op

△,T :

Op
△,T (U) := Z(T (U))lred, ρV,U := (resV,U)∗ : Op

△,T (V ) → Op
△,T (U).

Later, we consider the spectrum Spec△(T ) as the ringed space (Spec△(T ),O△,T ).

Recall that a morphism (f, f 󰂐) : (X,OX) → (Y,OY ) of ringed spaces consists of
a continuous map f : X → Y and a morphism f 󰂐 : f−1OY → OX of sheaves of
commutative rings on X. We say that the morphism (f, f 󰂐) is an open immersion
of ringed spaces if f : X → Y is an open immersion of topological spaces and
f 󰂐 : f−1OY → OX is an isomorphism. We remark that for a continuous map
f : X → Spec△(T ), the pullback sheaf f−1O△,T is isomorphic to the sheafification
of the presheaf

f pOp
△,T : U 󰀁→ lim−→

f(U)⊆V

Op
△,T (V )

of X.
Lemmas 2.3 and 2.4 show that the continuous maps in Lemmas 2.10 and 2.11 can

be extended to morphisms of ringed spaces.

Proposition 4.2. Let Φ : T → T ′ be a fully faithful dense exact functor. Then we
have an isomorphism

Φ∗ : Spec△(T ′)
∼=−→ Spec△(T )

of ringed spaces.

Proof. This follows from 2.3 and Lemmas 2.10. 󰃈
Proposition 4.3. Let K be a thick subcategory of T . Then the quotient functor
Φ : T → T /K induces a morphism

Φ∗ : Spec△(T /K) → Spec△(T )

of ringed spaces. Moreover, if the image of Φ∗ is an open subset of Spec△(T ), then
the above morphism is an open immersion of ringed spaces.
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Proof. We construct a morphism (Φ∗)󰂐 : (Φ∗)−1O△,T → O△,T /K of sheaves of com-
mutative rings. Take open subsets U ⊆ Spec△(T /K) and V ⊆ Spec△(T ) with

Φ∗(U) ⊆ V . Setting 󰁨U := Φ∗(U) = {P ∈ Spec△(T ) | K ⊆ P ,P/K ∈ U}, one sees

U = {P/K | P ∈ 󰁨U} and hence (T /K)U =
󰁗

P∈󰁨U P/K = T 󰁨U/K. Then the inclusion

T V ⊆ T 󰁨U induces a triangle functor

T /T V → T /T 󰁨U ∼= (T /K)/(T 󰁨U/K) = (T /K)/(T /K)U ,

where the triangle equivalence is by [27, Proposition 2.3.1(c)]. Applying Z((−)󰂑), we
get a homomorphism Op

△,T (V ) → Op
△,T /K(U). Moreover, let U ⊆ U ′ ⊆ Spec△(T /K)

and V ⊆ V ′ ⊆ Spec△(T ) be other open subsets with 󰁩U ′ := Φ∗(U ′) ⊆ V ′. Then the
inclusions

T V 󰈓 󰉳 󰈣 T 󰁨U

T V ′ 󰈓 󰉳 󰈣
󰈳󰈓

󰉃

T 󰁩U ′
󰈳󰈓

󰉃

induce a commutative diagram

T /T V 󰈣󰈣 T /T 󰁨U ∼= (T /K)/(T /T 󰁨U)

T /T V ′ 󰈣󰈣

󰉃󰉃

T /T 󰁩U ′

󰉃󰉃

∼= (T /K)/(T /T 󰁩U ′
).

󰉃󰉃

Applying Z((−)󰂑)lred, we obtain a commutative diagram

Op
△,T (V ) 󰈣󰈣 Op

△,T /K(U)

Op
△,T (V

′) 󰈣󰈣

󰉃󰉃

Op
△,T /K(U

′).

󰉃󰉃

Therefore, the homomorphism Op
△,T (V ) → Op

△,T /K(U) defines a morphism

(Φ∗)pOp
△,T → Op

△,T /K of presheaves of commutative rings. Taking sheafifications,

we obtain a morphism (Φ∗)󰂐 : (Φ∗)−1O△,T → O△,T /K of sheaves of commutative
rings.

Next, assume Φ∗(Spec△(T /K)) ⊆ Spec△(T ) is an open subset. Then Φ∗ :
Spec△(T /K) → Spec△(T ) is an open immersion of topological spaces. For any
open subset U ⊆ Spec△(T /K), the map (Φ∗)pOp

△,T /K(U) → Op
△,T (U) is induced

from the triangle equivalence

T /T 󰁨U ∼= (T /K)/(T 󰁨U/K) = (T /K)/(T /K)U .

As a result, the map (Φ∗)pOp
△,T /K → Op

△,T is an isomorphism and hence so is

(Φ∗)󰂐 : (Φ∗)−1O△,T /K → O△,T . 󰃈
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Corollary 4.4. For an object M ∈ T , the quotient functor Φ : T → T /〈M〉 induces
an open immersion

Φ∗ : Spec△(T /〈M〉) ↩→ Spec△(T )

of ringed spaces.

Proof. The image of Φ∗ is

{P ∈ Spec△(T ) | M ∈ T } = Spec△(T ) \ Z({M}),
which is an open subset of Spec△(T ). The result follows from Proposition 4.3. 󰃈

The main theorem in this section compares the Balmer spectrum and the tri-
angular spectrum for an idempotent complete, rigid, and locally monogenic tensor
triangulated category. We treat the monogenic case first.

Lemma 4.5. Let T be an idempotent complete, rigid, monogenic tensor triangu-
lated category. Assume further that Spec⊗(T ) is noetherian. Then the equality
Spec△(T ) = Spec⊗(T ) holds.

Proof. Since T = 〈1〉, every thick subcategory is a thick ideal. Therefore, by [3,
Remark 4.3], the thick subcategories and the radical thick ideals coincide.

Let P ∈ Spec△(T ) and take the smallest element X in {X ∈ Th(T ) | P ⊊ X}.
Since P is a radical thick ideal by the above argument, it is the intersection of all
prime thick ideals Q containing P by [3, Lemma 4.2]. If P is not a prime thick ideal,
then such Q satisfies P ⊊ Q and hence X ⊆ Q by the assumption on X . Therefore,
P ⊊ X ⊆

󰁗
Q∈Spec⊗(T ),P⊆Q Q = P leads a contradiction. Hence we conclude that

the inclusion Spec△(T ) ⊆ Spec⊗(T ) holds.
Conversely, take P ∈ Spec⊗(T ) and prove P ∈ Spec△(T ). It follows from [3, The-

orem 4.10] that there is an order-preserving bijection between the thick subcategories
of T and the specialization-closed subsets of Spec⊗(T ). The noetherian assumption
is used here. Under this bijection, P corresponds to the specialization-closed subset

W := {Q ∈ Spec⊗(T ) | P ∕⊆ Q} = {Q ∈ Spec⊗(T ) | P ∕∈ {Q}}.
Here we use [3, Proposition 2.9]. Therefore, it suffices to show that there is the
smallest specialization-closed subset T with W ⊊ T . Set T := W ∪ {P} and
prove that this is the specialization-closed subset that we need. For an element
Q ∈ {P} \ {P}, Q belongs to W as P ∕⊆ Q. Thus T = W ∪ {P} holds and
this is specialization-closed. For a specialization-closed subset W ′ ⊆ Spec⊗(T ) with
W ⊊ W ′, we will check T ⊆ W ′. Since W ⊊ W ′, there is an element Q ∈ W ′ such
that Q ∕∈ W . Then Q ∕∈ W implies P ∈ {Q}. As W ′ is specialization-closed, one

has P ∈ {Q} ⊆ W ′. This shows that the inclusion T ⊆ W ′ and hence T is the
smallest specialization-closed subset with W ⊊ T . 󰃈
Theorem 4.6. Let (T ,⊗,1) be an idempotent complete, rigid, locally monogenic
tensor triangulated category. Assume further that Spec⊗(T ) is noetherian.

(1) Let P be a thick ideal of T . Then P is a prime thick ideal if and only if it
is a prime thick subcategory. In particular, there is an inclusion Spec⊗(T ) ⊆
Spec△(T ).
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(2) There is a morphism

i : Spec⊗(T )red → Spec△(T )

of ringed spaces satisfying the following conditions:
(a) The map of underlying topological spaces is the inclusion Spec⊗(T ) ⊆

Spec△(T ).
(b) i is an open immersion of ringed spaces whenever Spec⊗(T ) is an open subset

of Spec△(T ).
(c) i is an isomorphism of ringed spaces if T is monogenic.

Proof. (1) The “only if” part follows from [19, Proposition 4.8]. Here we note that
under the assumption, every thick ideal is radical by [4, Proposition 2.4].

Let us show the “if” part. Take P ∈ Spec⊗(T ) and a quasi-compact open neigh-
borhood P ∈ U ⊆ Spec⊗(T ) with T (U) = 〈1U〉. Then T (U) is idempotent
complete, rigid, and monogenic. On the other hand, it follows from [7, Proposi-
tion 1.11] that the canonical functor resU : T → T (U) induces a homeomorphism

(resU)
∗ : Spec⊗(T (U))

∼=−→ U . In particular, Spec⊗(T (U)) is noetherian. Applying
Lemma 4.5 yields the equality Spec⊗(T (U)) = Spec△(T (U)). Then U is a subset of
Spec△(T ) via the composition

U
((resU )∗)−1

−−−−−−→ Spec⊗(T (U)) = Spec△(T (U))
(resU )∗−−−−→ Spec△(T ).

Therefore, we get P ∈ U ⊆ Spec△(T ).
(2) Let i : Spec⊗(T ) ↩→ Spec△(T ) denote the inclusion and construct a morphism

i−1O△,T → (O⊗,T )red of sheaves of rings. For open subsets U ⊆ Spec⊗(T ) and
V ⊆ Spec△(T ) with U ⊆ V , the inclusion T V ⊆ T U induces a homomorphism

Op
△,T (V ) = Z (T (V ))lred → Z (T (U))lred

∼= EndT (U)(1U)red = Op
⊗,T (U)red,

where the isomorphism is proved in Proposition 3.1. Moreover, for other open
subsets U ⊆ U ′ ⊆ Spec⊗(T ) and V ⊆ V ′ ⊆ Spec△(T ) with U ′ ⊆ V ′, we get the
commutative diagram

T /T V 󰈣󰈣 T /T U

T /T V ′ 󰈣󰈣

󰉃󰉃

T /T U ′
.

󰉃󰉃

Applying Z((−)󰂑)lred yields a commutative diagram

Op
△,T (V ) Z(T (V ))lred 󰈣󰈣 Z(T (U))lred ∼= Op

⊗,T (U)red

Op
△,T (V

′)

󰉃󰉃

Z(T (V ′))lred 󰈣󰈣

󰉃󰉃

Z(T (U ′))lred

󰉃󰉃

∼= Op
⊗,T (U

′)red.

󰉃󰉃

Therefore, Op
△,T (V ) → Op

⊗,T (U)red defines a morphism ipOp
△,T → (Op

⊗,T )red of
presheaves of commutative rings. Taking sheafifications, we obtain a morphism
i󰂐 : i−1O△,T → (O⊗,T )red of sheaves of commutative rings.
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Assume Spec⊗(T ) is an open subset of Spec△(T ). Then for any open subset U ⊆
Spec⊗(T ), the homomorphism ipOp

△,T (U) → Op
⊗,T (U) is given by the isomorphism

Z(T (U))lred ∼= EndT (U)(1U)red

in Proposition 3.1. Thus, ipOp
△,T (U) → Op

⊗,T (U) is an isomorphism and hence so

is i−1O△,T (U) → O⊗,T (U). This means that i : Spec⊗(T ) → Spec△(T ) is an open
immersion of ringed spaces. In particular, if T is monogenic, then Spec⊗(T ) =
Spec△(T ) holds by 4.5 and hence i : Spec⊗(T ) → Spec△(T ) is an isomorphism of
ringed spaces. 󰃈

As Dpf(X) is an idempotent complete, rigid, locally monogenic tensor triangu-
lated category, we get the following immediate consequence of the combination of
Theorems 2.7 and 4.6.

Corollary 4.7. For a noetherian scheme X, there is a morphism of ringed spaces

SX : Xred → Spec△(D
pf(X)), x 󰀁→ SX(x),

which is an open immersion of ringed spaces if SX(X) is open in Spec△(D
pf(X)).

In particular, SX : Xred → Spec△(D
pf(X)) is an isomorphism of ringed spaces if X

is quasi-affine.

Remark 4.8. Since the ringed space Spec△(D
pf(X)) is entirely determined by the

triangulated category structure of Dpf(X), Corollary 4.7 directly implies Corollary
3.4. Moreover, in a recent work [16], Ito and the author proved that SX(X) ⊆
Spec△(D

pf(X)) is an open subset if X is a quasi-projective variety over an alge-

braically closed field. Consequently, SX : X → Spec△(D
pf(X)) is an open im-

mersion of ringed spaces under the assumption. As an application, we relax the
assumption (i) in Theorem 3.3, and it gives an alternative proof of Bondal-Orlov,
Ballad reconstruction theorem [1, Theorem 2].

Using Corollary 4.7, we determine Spec△(D
pf(X)) forX which appeared in Propo-

sition 2.14.

Corollary 4.9. Let P1 be the projective line over a field k. Then there is an iso-
morphism

Spec△(D
pf(P1)) ∼= P1 ⊔

󰀣
󰁊

n∈Z

Spec(k)

󰀤

of ringed spaces.

Proof. For any integer n ∈ Z, it follows from [15, Corollary 8.29] that we get triangle
equivalences Dpf(P1)/〈OP1(n)〉 ∼= 〈OP1(n + 1)〉 ∼= Dpf(Spec(k)). It follows from
Corollaries 4.4 and 4.7 that there is an open immersion

fn : Spec(k)
SSpec(k)−−−−→∼=

Spec△(D
pf(Spec(k))) ∼= Spec△(D

pf(P1)/〈OP1(n)〉) ↩→ Spec△(D
pf(P1))

of ringed spaces whose image is 〈OP1(n)〉. Moreover, Corollary 4.7 and [13, Corollary
4.7] show that there is an open immersion

g := SP1 : P1 ↩→ Spec△(D
pf(P1))
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of ringed spaces. As it is proved in [19, Example 4.10], Spec△(D
pf(P1)) is the

disjoint union of the images of fn (n ∈ Z) and g. Therefore, fn (n ∈ Z) and g
induce isomorphism

P1 ⊔
󰀣
󰁊

n∈Z

Spec(k)

󰀤
∼= Spec△(D

pf(P1))

of ringed spaces. 󰃈

Corollary 4.10. Let E be an elliptic curve over an algebraically closed field. Then
there is an isomorphism

Spec△(D
pf(E)) ∼= E ⊔

󰀳

󰁃
󰁊

(r,d)∈I

Er,d

󰀴

󰁄

of ringed spaces. Here, I := {(r, d) ∈ Z2 | r > 0, gcd(r, d) = 1} and Er,d is a copy of
E for each (r, d) ∈ I.

In particular, for elliptic curves E and E ′, if there is a triangle equivalence
Dpf(E) ∼= Dpf(E ′), then there is an isomorphism E ∼= E ′ of schemes.

Proof. For an element (r, d) ∈ I, M(r, d) denotes the moduli space of µ-semistable
sheaves with Chern character (r, d). It follows from [26, Theorem 1] that M(r, d) ∼=
Er,d, where Er,d is a copy of E. Moreover, [12, Proposition 3] shows that there is a
triangle equivalence

Φr,d : D
pf(E)

∼=−→ Dpf(M(r, d)).

Then we get open immersions

fr,d : Er,d
∼= M(r, d)

SM(r,d)

↩→ Spec△(D
pf(M(r, d)))

Φ∗
r,d−−→∼= Spec△(D

pf(E)),

g := SE : E ↩→ Spec△(D
pf(E))

of ringed spaces by Corollary 4.7 and [13, Corollary 4.7]. It is shown in [13, Theorem
4.11] that Spec△(D

pf(E)) is the disjoint union of open subsets fr,d(Er,d) ((r, d) ∈ I)
and g(E). Hence fr,d ((r, d) ∈ I) and g induce an isomorphism

E ⊔

󰀳

󰁃
󰁊

(r,d)∈I

Er,d

󰀴

󰁄 ∼=−→ Spec△(D
pf(E))

of ringed spaces.
Next, assume there is a triangle equivalence Dpf(E) ∼= Dpf(E ′) for elliptic curves

E and E ′. Then the first statement shows that there is an isomorphism between
disjoint unions of copies of E and E ′:

󰁊
E ∼= Spec△(D

pf(E)) ∼= Spec△(D
pf(E ′)) ∼=

󰁊
E ′.

Comparing their connected components, we get an isomorphism E ∼= E ′. 󰃈
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Remark 4.11. The second statement of Corollary 4.10 can be found in [15, Pages
134 and 135] for example. However, our proof uses the completely different argu-
ment.

We close the paper with the following remark.

Remark 4.12. In this article, the spectrum Spec△(T ) has been introduced merely
as a ringed space. If the morphism i : Spec⊗(T )red → Spec△(T ) in Theorem 4.6 is
an open immersion, then it is topologically open immersion and

i󰂐 : i∗O△,T → (O⊗,T )red

is an isomorphism of sheaf of rings. Therefore, for a point P ∈ Spec⊗(T ), we obtain
isomorphisms

(O△,T )P ∼= (i∗O△,T )P ∼= ((O⊗,T )red)P

of rings. This shows that (O△,T )P is a local ring and that (i󰂐)P : (O△,T )P →
((O⊗,T )red)P is a morphism of local rings. Here, we note that a ring isomorphism
between local rings automatically preserves the maximal ideal. In particular, if T is
monogenic, then Spec△(T ) is a locally ringed space and the map i : Spec⊗(T )red →
Spec△(T ) is an isomorphism of locally ringed spaces.

Recently, Matsukawa ([20]) proved that the spectrum is actually a locally ringed
space. Moreover, it is shown that the morphism SX : Xred → Spec△(D

pf(X))
in Corollary 4.7 is an open immersion whenever X is a topologically noetherian
scheme, see [20, Theorem 2.11]. Thus, the morphism SX : Xred → Spec△(D

pf(X))
is an open immersion of locally ringed spaces.
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