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ABSTRACT. We prove that the depth formula holds for two finitely generated Tor-independent modules
over Cohen-Macaulay local rings if one of the modules considered has finite reducing projective dimension
(for example, if it has finite projective dimension, or the ring is a complete intersection). This generalizes
a result of Bergh-Jorgensen which shows that the depth formula holds for two finitely generated Tor-
independent modules over Cohen-Macaulay local rings if one of the modules considered has reducible
complexity and certain additional conditions hold.

Each module that has reducible complexity also has finite complexity and finite reducing projective
dimension, but not necessarily vice versa. So a new advantage we have is that, unlike modules of reducible
complexity, Betti numbers of modules of finite reducing projective dimension can grow exponentially.

1. INTRODUCTION

Throughout R denotes a commutative Noetherian local ring with unique maximal ideal m and residue
field k, and all R-modules are assumed to be finitely generated.

In his beautiful paper [4] Auslander proved that, if M and N are R-modules such that pdR(M) < ∞,
and M and N are Tor-independent, that is, if TorR

i (M,N) = 0 for all i≥ 1, then the following holds:

depthR(M)+depthR(N) = depth(R)+depthR(M⊗R N).

Huneke-Wiegand dubbed this depth equality the depth formula, and proved that the depth formula holds
if R is a complete intersection ring, and M and N are Tor-independent R-modules, regardless of whether
M or N has finite projective dimension; see [27, 2.5]. Subsequently, consequences of the depth formula,
and different conditions that force this formula to hold were studied in several papers; see, for example,
[3, 14, 18, 19, 20, 21, 25, 28]. In this paper we are concerned with results of Bergh-Jorgensen [12]
who studied the depth formula over Cohen-Macaulay rings for modules that have reducible complexity;
see also Bergh [11] and Sadeghi [36] for similar results over local rings that are not necessarily Cohen-
Macaulay. The results of Bergh-Jorgensen in [12] concerning the depth formula can be summarized as
follows; see also 4.1 and Remark 4.3.

Theorem 1.1 (Bergh-Jorgensen; see [12, 3.3, 3.4, 3.5, 3.6]). Let R be a Cohen-Macaulay local ring
and let M and N be Tor-independent R-modules. Assume at least one of the following holds:

(i) depthR(M)< depth(R).
(ii) G-dimR(N)< ∞ (for example, R is Gorenstein).

(iii) N has reducible complexity (for example, R is a complete intersection ring).
If M has reducible complexity, then the depth formula holds for M and N. �

In this paper we generalize Theorem 1.1 and prove the following in Theorem 3.4:
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Theorem 1.2. Let R be a Cohen-Macaulay local ring and let M and N be Tor-independent R-modules.
If M has finite reducing projective dimension (for example, if M has reducible complexity), then the
depth formula holds for M and N. �

We recall the definitions of reducible complexity and reducing projective dimension in the next
section; see 2.2 and 2.3. Here let us note that finite reducing homological dimension generalizes finite
homological dimension. The definition of reducing projective dimension [1] was motivated by that of
reducible complexity [11], but these two definitions are different in nature: The latter deals with modules
that have finite complexity, namely, modules that have polynomial growth on their Betti numbers. It is
worth noting that, for an R-module M, we have the following (non)implications; see 2.1, 2.2, and 2.3.

pdR(M)< ∞
+3 CI-dimR(M)< ∞�ks

+3 M has reducible complexity�ks
+3 red-pdR(M)< ∞�ks

As noted above, each module that has reducible complexity also has (by definition) finite reducing
projective dimension, but the converse of this fact is not true in general. For example, if R is a Cohen-
Macaulay non-Gorenstein local ring such that R has minimal multiplicity and |k| = ∞ (one can pick
R = C[[t3, t4, t5]]) and M = Ωn

R(k) for some n≥ 0, then M has finite reducing projective dimension, but
M does not have reducible complexity; see [16, 1.2]. There are many similar examples in the literature;
to name a few, see Examples 2.9, 2.10, and 2.11.

Recently, several classical results for modules with finite homological dimensions have been gener-
alized in terms of reducing homological dimensions. For example, a local ring R is Gorenstein if and
only if each R-module has finite reducing Gorenstein dimension; see 2.8(iii). Theorem 1.2 is another
such contribution to the literature and it is a special case of a more general result, namely Theorem
3.4; see also Proposition 3.2. Theorem 3.4, our main result, establishes the derived version of the depth
formula [23] over Cohen-Macaulay local rings provided that Tor modules eventually vanish and one of
the modules considered has finite reducing projective dimension. The proof of Theorem 3.4 relies upon
the usage of some derived category tools; see, for example, 2.15 and 2.16.

In section 2, we recall the necessary definitions and provide several examples. The proof of Theorem
1.2 is given in section 3, while section 5 contains the proofs of the auxiliary results used in proving
the theorem. Section 4 is devoted to some applications of our results; see, for example, Corollary 4.2
and Proposition 4.6. One such application considers a beautiful formula of Jorgensen [29], which ex-
tends the classical Auslander-Buchsbaum formula; see 4.14. Over Cohen-Macaulay rings, we improve
Jorgensen’s formula and prove the following; see Theorem 4.15.

Theorem 1.3. Let R be a Cohen-Macaulay local ring and let M and N be nonzero R-modules. If
TorR

i (M,N) = 0 for all i� 0 and red-CI-dimR(M)< ∞, then

sup{i : TorR
i (M,N) 6= 0}= sup

{
depth(Rp)−depthRp

(Mp)−depthRp
(Np) | p ∈ Spec(R)

}
.

2. DEFINITIONS, PRELIMINARY RESULTS, AND EXAMPLES

In this section we record some definitions, and discuss several examples and preliminary results that
are needed in the subsequent sections.

2.1 (Gorenstein and complete intersection dimensions [7, 10]). An R-module M is said to be to-
tally reflexive provided that the natural map M → M∗∗, where M∗ = HomR(M,R), is bijective and
ExtiR(M,R) = 0 = ExtiR(M

∗,R) for all i ≥ 1. The infimum of n for which there exists an exact se-
quence 0→ Xn → ··· → X0 → M → 0, such that each Xi is totally reflexive, is called the Gorenstein
dimension of M. If M has Gorenstein dimension n, we write G-dimR(M) = n. Therefore, M is totally
reflexive if and only if G-dimR(M)≤ 0, where it follows by convention that G-dimR(0) =−∞.

A diagram of local ring maps R→ R′ � S is called a quasi-deformation if R→ R′ is flat and the
kernel of the surjection R′ � S is generated by a regular sequence on S. The complete intersection
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dimension of M is defined as follows:

CI-dimR(M) = inf{pdS(M⊗R R′)−pdS(R
′) : R→ R′� S is a quasi-deformation}.

Note that, if R is a complete intersection ring, then each R-module has finite complete intersection
dimension [10, 1.3]. Moreover, the inequalities G-dimR(M)≤ CI-dimR(M)≤ pdR(M) hold in general;
if one of these dimensions is finite, then it is equal to the one to its left; see [10, 1.4].

We set pdR(0) = G-dimR(0) = CI-dimR(0) =−∞ and also depthR(0) = ∞. �

The reducing projective dimension definition [1] originated from the reducible complexity definition,
a notion introduced by Bergh; see [11]. Hence we first recall the definition of reducible complexity. In
the following Ωi

RM denotes the i-th syzygy of a given R-module M in its minimal free resolution.

2.2 (Complexity and reducible complexity [9, 11]). Let M be an R-module. The complexity of M [9] is:

cxR(M) = inf{r ∈ N0 | ∃ A ∈ R such that dimk
(

TorR
n (M,k)

)
≤ A ·nr−1 for all n� 0}.

Note that cxR(M) = 0 if and only if pdR(M) < ∞, and cxR(M) ≤ 1 if and only if M has bounded
Betti numbers. In general cxR(M) may be infinite; in fact, R is a complete intersection if and only if
cxR(k) < ∞; see [10, 1.3]. Moreover, if CI-dimR(M) < ∞ (for example, if R is a complete intersection
ring), then cxR(M)< ∞; see [10, 5.3].

The module M is said to have reducible complexity [11] if cxR(M) = 0, or if 0 < cxR(M) = r < ∞

and there are short exact sequences of R-modules

{0→ Ki−1→ Ki→Ω
ni
R Ki−1→ 0}r

i=0,

with ni ≥ 0, where K0 = M and cxR(Ki+1) = cxR(Ki)−1 for all i = 0, . . . ,r (so that pdR(Kr)< ∞).
There are many examples of modules that have reducible complexity. For example, periodic modules

over arbitrary local rings, and modules over complete intersection rings (or more generally, modules
over arbitrary local rings that have finite complete intersection dimension) have reducible complexity;
see [10, 11] for the details.

2.3. (Reducing invariants [1, 2]) Let M be an R-module and let IR denote an invariant of R-modules,
that is, IR denotes a function from the set of isomorphism classes of R-modules to the set Z∪{±∞}.
Classical examples of IR are the projective dimension pdR, the Gorenstein dimension G-dimR, and the
complete intersection dimension CI-dimR.

The reducing invariant red-IR(M) of M is zero if IR(M)<∞. Hence, if IR ∈{pdR,G-dimR,CI-dimR},
then red-IR(0) = 0 since IR(0) = −∞; see [5]. If IR(M) = ∞, we write red-IR(M) < ∞ provided that
there exist integers r ≥ 1, ai ≥ 1, bi ≥ 1, ni ≥ 0, and short exact sequences of R-modules of the form

(2.3.1) 0→ K⊕ai
i−1 → Ki→Ω

ni
R K⊕bi

i−1 → 0,

for each i = 1, . . . ,r, where K0 = M and IR(Kr) < ∞. If a sequence as in (2.3.1) exists, then we call
{K0, . . . ,Kr} a reducing I-sequence of M; see [1, 2.1] and [2, 2.5].

If IR(M) = ∞, we define:

red-IR(M) = inf{r ∈ N : there is a reducing I-sequence {K0, . . . ,Kr} of M}.
It follows that 0≤ red-IR(M)≤ ∞. �

Remark 2.4. In the definition of reducible complexity and reducing invariants, minimal syzygy mod-
ules are used. However, if IR ∈ {pdR,G-dimR,CI-dimR}, then we may use syzygies that are not neces-
sarily minimal to define red-IR. This can be seen as follows:

If 0→ K → K1 → Ωn
RK⊕F → 0 is a short exact sequence of R-modules, where F is a free mod-

ule, then we obtain an induced exact sequence 0→ K → K′1 → Ωn
RK → 0, where K1 ∼= K′1⊕F and

red-IR(K1) = red-IR(K′1); see [16, 3.8 and the proof of the claim in the proof of 4.2]. Hence, if M is
an R-module, then the value of red-IR(M) does not change whether or not we use minimal syzygies to
define red-IR. �
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In passing we make use of Remark 2.4 and note:

Lemma 2.5. Let M be an R-module and let IR ∈{pdR,G-dimR,CI-dimR}. Then red-IRp(Mp)≤ red-IR(M)
for all p ∈ Spec(R).

Proof. If p ∈ Spec(R), then the localization of a reducing I-sequence of M over R at p is a reducing I-
sequence of Mp over Rp; see 2.3 and Remark 2.4. So red-IRp(Mp)≤ red-IR(M) for all p∈ Spec(R). �

Next are some further results that are needed later in the sequel.

2.6. The following properties are due to the definition of reducing invariants; see 2.3 and also [16, 2.2]:
(i) If 1 ≤ red-IR(M) < ∞, then there is an exact sequence 0→ M⊕a → K → Ωn

RM⊕b → 0, where
a≥ 1, b≥ 1, and n≥ 0 are integers, and K is an R-module such that red-IR(K) = red-IR(M)−1.

(ii) Conversely, if 0→ M⊕a → K → Ωn
RN⊕b → 0 is an exact sequence of R-modules, where a ≥ 1,

b≥ 1, and n≥ 0 are integers, then red-IR(M)≤ red-IR(K)+1.

2.7. Let M be an R-module.
(i) red-CI-dimR(M)< ∞ if and only if red-pdR(M)< ∞; see [15, 2.7].

(ii) If x ∈m is a non zero-divisor on R and M, then red-pdR/xR(M/xM)≤ red-pdR(M); see [16, 3.4].

Remark 2.8.
(i) The definition of the reducing dimension we use in this paper is taken from [2], even though this

notion was originally defined in [1]. The difference between these two definitions is that [2] only
requires the integers ni in Definition 2.3 to be nonnegative, while [1] requires these numbers to be
positive. Hence, if a module has finite reducing invariant with respect to the definition given in
[1], then it has also finite reducing invariant with respect to the definition we use in this paper.

(ii) Given an integer c≥ 1, one can always find a ring R and an R-module M with red-pdR(M) = c < ∞

and pdR(M) = ∞. More precisely, if R is a singular complete intersection ring of codimension c
(for example, R = k[[x1, . . . ,xc,y1, . . . ,yc]]/(x1y1, . . . ,xcyc) for some field k) and M = Ωi

R(k) for an
integer i≥ 0, then pdR(M) = ∞ and red-pdR(M) = cxR(M) = c; see [16, 2.8].

(iii) Several characterizations of local rings in terms of reducing dimensions were obtained in [15].
For example, it follows that a local ring R is Gorenstein if and only if each R-module has finite
reducing Gorenstein dimension; see [15, 3.12]. Similarly there are various questions that remain
open about these invariants. For example, it is not known whether or not the residue field of a local
ring always has finite reducing projective dimension; see [16] for the details. �

In general, a module having reducible complexity also has finite reducing projective dimension; see
2.2 and 2.3. On the other hand, modules that have finite reducing projective dimension – which have
infinite complexity – are abundant in the literature. In other words, reducing projective dimension is a
finer invariant than reducible complexity. Next we record several examples which illustrate this fact.

Example 2.9 ([1, 2.3 and 2.4]). Let R = k[[x,y]]/(x2,xy,y2). The beginning of the minimal free resolu-
tion of k is:

· · · −→ R⊕4

(
x y 0 0
0 0 x y

)
−−−−−−→ R⊕2

(
x y
)

−−−→ R−→ k −→ 0.
Notice R is not Gorenstein so that we have cxR(k)=CI-dimR(k)=G-dimR(k)= pdR(k)=∞; see 2.1 and
2.2. As m∼= k⊕2, it follows that Ω2

Rk∼= k⊕4. So, there is an exact sequence 0→ k⊕4→ R⊕2→ΩRk→ 0.
Therefore {k,R⊕2} is a reducing pd-sequence of k. We see that red-pdR(k) = red-G-dimR(k) = 1 < ∞.

This construction can be generalized as long as m2 = 0. In that case there is an exact sequence
0→ k⊕e2 → R⊕e→ΩRk→ 0, where e is the embedding dimension of R. This fact implies that {k,R⊕e}
is a reducing pd-sequence (and hence reducing G-dim) sequence of k. If R is not Gorenstein, then
red-pdR(k) = 1 = red-G-dimR(k) and pdR(k) = ∞ = G-dimR(k).
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Example 2.10. ([1, 2.7]) Let R = k[[x3,x2y,xy2,y3]], the 3rd Veronese subring of the formal power
series ring k[[x,y]], and consider the R-module M = (x2,xy,y2). It follows that G-dimR(M) = ∞, and
there exists a short exact sequence 0→M⊕4→ F → ΩRM→ 0 for some free R-module F . Therefore
we have that red-G-dimR(M) = 1.

Example 2.11. ([16, 2.12]) Let R be a Cohen-Macaulay local ring which is not regular. If I is an Ulrich
ideal of R which is not a parameter ideal, then pdR(R/I) = ∞ and red-pdR(R/I) = 1.

If R has minimal multiplicity and |k|= ∞, then m is an Ulrich ideal which is not a parameter ideal so
that pdR(k) = ∞ and red-pdR(k) = 1. Some specific examples can be given as follows:

(i) If R = k[[x,y,z]]/(x3− y2,z2− x2y) and I = (x,y). Then R is Cohen-Macaulay but not regular, and
I is an Ulrich ideal of R which is not a parameter ideal. So pdR(R/I) = ∞ and red-pdR(R/I) = 1.

(ii) Let R=C[[x,y]]/(x,y)2, or R=C[[t3, t4, t5]], or R=C[[t4, t5, t6, t7]]. Then R is a non-regular Cohen-
Macaulay local ring with minimal multiplicity. It follows that pdR(k) =∞ and red-pdR(k) = 1. �

2.12. Given R-modules M and N, we set qR(M,N) = sup{i : TorR
i (M,N) 6= 0}. Note that, if M and N

are nonzero R-modules, then qR(M,N) = 0 if and only if M and N are Tor-independent.

We present several facts about complexes in 2.13 which are needed for our arguments. For example,
a useful result of Iyengar [28, 2.3] recorded in 2.13(iii) allows us to avoid using spectral sequences in
the proof of Proposition 3.2.

2.13. An R-complex X is a complex of (finitely generated) R-modules which is indexed homologically.
Set K = K(x1, . . . ,xe;R), the Koszul complex on a generating set {x1, . . . ,xe} of m; see [28, 5.3(1)].

(i) We say X is homologically bounded if sup(X)− inf(X) < ∞, where inf(X) = inf{i | Hi(X) 6= 0}
and sup(X) = sup{i | Hi(X) 6= 0}. Also, the R-complex X [1] is defined by X [1]n = Xn−1 and
∂

X [1]
n =−∂ X

n−1.
(ii) The depth of X is defined as depthR(X) = −sup(RHomR(k,X)); see [28, 6.1]. It follows from

[24, 2.1, 2.3] that depthR(X) also equals e− sup(K⊗R X).
If X 6' 0 and X is homologically bounded, then depthR(X)≤ dim(R)− sup(X); see [22, 3.17].

Hence, if X = M⊗L
R N for some nonzero R-modules M and N such that qR(M,N) < ∞, then

depthR(M⊗L
R N)≤ dim(R).

(iii) It follows that sup(X)≤ sup
(
K⊗R X

)
≤ sup(X)+e and−sup(X)≤ depthR(X)≤ e−sup(X); see

[24, 1.3]. Thus, depthR(X) =−∞ if and only if sup(X) = ∞; see also [28, Section 2].
Moreover, if sup(X)< ∞ and depthR

(
Hs(X)

)
≤ 1 with s = sup(X), then [28, 2.3] implies that

depthR(X) = depthR
(
Hs(X)

)
− s.

(iv) Let X → Y → Z → X [1] be an exact triangle, where X , Y , and Z are R-complexes such that
sup(X) < ∞ and sup(Z) < ∞ (so that sup(Y ) < ∞). Then the derived depth lemma yields the
following; see, for example, [13, 1.2.9].
(a) depthR(X)≥min{depthR(Y ),depthR(Z)+1}.
(b) depthR(Y )≥min{depthR(X),depthR(Z)}.
(c) depthR(Z)≥min{depthR(Y ),depthR(X)−1}.
(d) If depthR(Z)≥ depthR(X), then depthR(Y ) = depthR(X).

(v) We say that the derived depth formula [20] holds for given R-modules M and N provided that

depthR(M)+depthR(N) = depth(R)+depthR(M⊗L
R N).

(vi) Let M and N be R-modules. If qR(M,N)<∞ and CI-dimR(M)<∞, then the derived depth formula
holds for M and N; see [20, 5.3]. This recovers a result of Foxby [23, 2.1] who initially proved
that the derived depth formula holds for M and N if pdR(M)< ∞; see also [28, 2.2]. �

We finish this section by recording the preliminary results which are needed for the proof of Theorem
3.4. To not to disturb the flow of the paper, we prove these preliminary results, namely 2.14, 2.15, and
2.16 in section 5.
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2.14. Let M and N be R-modules. Assume there is a short exact sequence of R-modules

0→M⊕a→ K→Ω
n
RM⊕b→ 0,

where a≥ 1, b≥ 1, and n≥ 0 are integers.
(i) If depthR(M)≤ depth(R), then depthR(M) = depthR(K).

(ii) If qR(M,N)< ∞, then qR(M,N) = qR(K,N).
(iii) Assume qR(M,N)< ∞. If n≥ 1, or depthR

(
TorR

qR(M,N)
(M,N)

)
≤ 1, then

depthR

(
TorR

qR(M,N)(M,N)
)
= depthR

(
TorR

qR(K,N)(K,N)
)
.

2.15. Let M and N be R-modules. Assume qR(M,N)< ∞. Assume further there exists x ∈ m such that
x is a non zero-divisor on R, M, and N. Then the following conditions are equivalent:

(i) depthR(M)+depthR(N) = depth(R)+depthR(M⊗L
R N).

(ii) depthR/xR(M/xM)+depthR/xR(N/xN) = depth(R/xR)+depthR/xR(M/xM⊗L
R/xR N/xN).

2.16. Let M and N be R-modules such that qR(M,N)< ∞. Assume the following conditions hold:
(i) depthR(M)≤ depth(R).

(ii) There is an exact sequence of R-modules 0→M⊕a→ K→Ωn
RM⊕b→ 0, where a≥ 1, b≥ 1, and

n≥ 0 are integers, and the derived depth formula holds for K and N.
Then depthR(K⊗L

R N) = min{depthR(M⊗L
R N),depthR(N)}. �

3. MAIN RESULT

In this section we prove Theorem 1.2 and determine some conditions that imply the derived depth
formula holds. We start by preparing a lemma; recall that we set qR(M,N) = sup{i : TorR

i (M,N) 6= 0}
for given R-modules M and N.

Lemma 3.1. Let M and N be R-modules such that qR(M,N) < ∞. Assume there is an exact sequence
of R-modules 0→M⊕a→ K→ Ωn

RM⊕b→ 0, where a ≥ 1, b ≥ 1, and n ≥ 0 are integers. Assume the
derived depth formula holds for K and N. Assume further at least one of the following holds:

(i) depthR(M)< depth(R).
(ii) depthR(M) = depth(R) and N is maximal Cohen-Macaulay.

(iii) depthR(M) = depth(R) and depthR(TorR
qR(M,N)

(M,N))≤ 1.

Then the derived depth formula holds for M and N.

Proof. As we assume depthR(M) ≤ depth(R), it follows from 2.14(i) that depthR(K) = depthR(M).
Also, by our hypothesis, the derived depth formula holds for K and N. These facts yield:

(3.1.1) depthR(N)−depth(K⊗L
R N) = depth(R)−depthR(M).

So, in view of (3.1.1), the derived depth formula holds for M and N if depth(M⊗L
R N)= depthR(K⊗L

R N).
Moreover, by 2.16, we have:

(3.1.2) depthR(K⊗L
R N) = min{depthR(M⊗L

R N),depthR(N)}.
Assume part (i) holds. Then (3.1.1) implies that depthR(N) > depth(K⊗L

R N). Hence we conclude
from (3.1.2) that depthR(K⊗L

R N) = depthR(M⊗L
R N).

Assume part (ii) holds. Then we have depthR(N) = dim(R). Moreover, as qR(M,N)< ∞, it follows
that depth(M⊗L

R N)≤ dim(R); see 2.13(ii). Thus (3.1.2) yields depth(K⊗L
R N) = depth(M⊗L

R N).
Finally assume part (iii) holds. Note that qR(M,N) = qR(K,N); see 2.14(ii). Set q = qR(M,N). As

we assume depthR(TorR
q (M,N))≤ 1, 2.13(iii) shows that

(3.1.3) depthR(M⊗L
R N) = depthR(TorR

q (M,N))−q.
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On the other hand, we know by 2.14(iii) that depthR(TorR
q (K,N)) = depthR(TorR

q (M,N)). Hence, using
2.13(iii) once more, we see:

(3.1.4) depthR(K⊗L
R N) = depthR(TorR

q (K,N))−q.

Consequently (3.1.3) and (3.1.4) imply that depth(K⊗L
R N) = depth(M⊗L

R N). �

Proposition 3.2. Let M and N be R-modules such that qR(M,N) < ∞. Assume at least one of the
following conditions holds:

(i) depthR(M)< depth(R).
(ii) depthR(M) = depth(R) and N is maximal Cohen-Macaulay.

(iii) depthR(M) = depth(R) and depthR(Torq(M,N))≤ 1.
If red-CI-dimR(M)< ∞, then the derived depth formula holds for M and N.

Proof. We set red-CI-dimR(M) = c and proceed by induction on c. If c = 0, then CI-dimR(M) < ∞ so
that the derived depth formula holds for M and N; see 2.3 and 2.13(vi).

Next assume c ≥ 1. Then there is an exact sequence of R-modules 0→M⊕a→ K→ Ωn
RM⊕b→ 0,

where a ≥ 1, b ≥ 1, and n ≥ 0 are integers, such that red-CI-dimR(K) < red-CI-dimR(M); see 2.6(i).
Moreover, 2.14 implies that the conditions (i), (ii), and (iii) hold for K. Hence, by the induction hypoth-
esis, we see that the derived depth formula holds for K and N. Consequently, the result follows from
Lemma 3.1. �

Our next result, Theorem 3.4, establishes Theorem 1.2 and generalizes the result of Bergh-Jorgensen,
which is stated as Theorem 1.1 in the introduction. Prior to proving Theorem 3.4, we recall a few related
points, particularly concerning the depth formula and the derived depth formula.

Recall that, given R-modules M and N, if depthR(M)+ depthR(N) = depth(R)+ depthR(M⊗R N),
then we say that the depth formula holds for M and N. Similarly, we say that the derived depth formula
holds if depthR(M)+ depthR(N) = depth(R)+ depthR(M⊗L

R N). If M and N are Tor-independent R-
modules, then depthR(M ⊗L

R N) = depthR(M ⊗R N) so that these two depth formulas are the same.
However, in general, neither of them implies the other one; see the next example and also Example 3.9.

Example 3.3. Let R be a local ring of positive depth d, x ∈ m be a non zero-divisor on R, M = R/xR,
and N = k. Then the derived depth formula holds for M and N since pdR(M) < ∞; see 2.13(vi). This
implies that depthR(M⊗L

R N) = −1. On the other hand, since depthR(N) = depthR(M⊗R N) = 0 and
depthR(M)+depthR(N) = d−1 6= d = d +depthR(M⊗R N), the depth formula for M and N fails.

Note that the hypothesis on the module M in the next theorem is strictly weaker than that of Theorem
1.1; see Examples 2.9 and 2.10.

Theorem 3.4. If R is a Cohen-Macaulay local ring and M and N are R-modules such that qR(M,N)<∞

and red-CI-dimR(M)< ∞, then the derived depth formula holds for M and N.

Proof. Assume R is a Cohen-Macaulay, qR(M,N)< ∞, and red-CI-dimR(M)< ∞. We may also assume
both M and N are nonzero. Then it follows that red-pdR(M)< ∞; see 2.7(i).

If depthR(M) < depth(R), Proposition 3.2(i) shows that the derived depth formula holds for M and
N. Hence we may assume depthR(M) = depth(R), that is, M is maximal Cohen-Macaulay. We set
d = dim(R) and proceed by induction on d.

If d ≤ 1, then Proposition 3.2(iii) shows that the derived depth formula holds for M and N, and
establishes the base case of the induction on d. Next we assume d ≥ 2.

Case 1: Assume depthR(N)≥ 1. Then there is an element x ∈m which is non zero-divisor on M, N,
and R. One can easily show that qR/xR(M/xM,N/xN) < ∞; see, for example, [35, Page 140, Lemma
2(iii)]. Furthermore, we have that red-pdR/xR(M/xM) ≤ red-pdR(M) < ∞; see 2.7(ii). As R/xR is a
Cohen-Macaulay local ring with dim(R/xR) = d−1 < d, the induction hypothesis on d applied to the
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pair (M/xM,N/xN) over R/xR shows that the derived depth formula holds for M/xM and N/xN over
R/xR. Thus the derived depth formula holds for M and N due to 2.15.

Case 2: Assume depthR(N) = 0. To deal with this case, we set red-pdR(M) = c and proceed by
induction on c. If c = 0, then pdR(M) < ∞ so that the derived depth formula holds for M and N; see
2.3 and 2.13(vi). So we assume c ≥ 1. Then it follows from 2.6(i) that there is a short exact sequence
of R-modules 0→ M⊕a → K → Ωn

RM⊕b → 0, where a ≥ 1, b ≥ 1, and n ≥ 0 are integers, such that
red-pdR(K)< red-pdR(M). Then, in view of 2.14(ii), the induction hypothesis implies that the derived
depth formula holds for K and N. Also we know that d = depthR(M) = depthR(K); see 2.14(i). Hence
it suffices to show depthR(M⊗L

R N) = depthR(K⊗L
R N).

We observe that depthR(K⊗L
R N) = 0 since the derived depth formula holds for K and N, that is,

d = d +0 = depthR(K)+depthR(N) = depth(R)+depthR(K⊗L
R N) = d +depthR(K⊗L

R N).

As depthR(M) ≤ depth(R) = dim(R), and since the derived depth formula holds for K and N over
R, we have by 2.16 that depthR(M⊗L

R N)≥min{depthR(M⊗L
R N),depthR(N)}= depthR(K⊗L

R N) = 0.
Therefore we aim to prove 0 = depthR(K⊗L

R N)≥ depthR(M⊗L
R N).

Consider a syzygy short exact sequence

(3.4.1) 0→ΩRN→ F → N→ 0,

where F is a (finitely generated) free R-module. As depthR(F) = depth(R) = d ≥ 2 > 0 = depthR(N), it
follows by the depth lemma that depthR(ΩRN) = 1. So we can use Case 1 with the pair (M,ΩRN), and
conclude that depthR(M⊗L

R ΩRN) = depthR(M)+depthR(ΩRN)−d = 1 (recall that depthR(M) = d).
We apply the functor M⊗L

R− to the exact triangle induced from (3.4.1), and obtain the exact triangle:

(3.4.2) M⊗L
R ΩRN→M⊗L

R F →M⊗L
R N→ (M⊗L

R ΩN)[1].

Suppose depthR(M⊗L
R N) ≥ depthR(M⊗L

R ΩRN) = 1. Then the derived depth lemma 2.13(iv)(a)
gives the following contradiction

1 = depthR(M⊗L
R ΩRN)≥min

{
depthR(M⊗L

R F),depthR(M⊗L
R N)+1

}
≥ 2.

Consequently, depthR(M⊗L
R N) < depthR(M⊗L

R ΩRN) = 1, that is, depthR(M⊗L
R N) ≤ 0. This estab-

lishes the claim when depthR(N) = 0, and completes the proof of the theorem by induction on d. �

We do not know whether the conclusion of Theorem 3.4 holds over rings that are not necessarily
Cohen-Macaulay. Hence the following question is natural:

Question 3.5. Let R be a local ring and let M and N be R-modules. If red-CI-dimR(M) < ∞ and
qR(M,N)< ∞, then must the derived depth formula hold for M and N?

We proceed to elaborate on Question 3.5. More precisely, we give examples which showcase the
necessity of the finiteness of qR(M,N) and red-CI-dimR(M) in the question; see Examples 3.7 and 3.9.

Remark 3.6. Let M and N be R-modules and set X = M⊗L
R N. Then 2.13(iii) yields that

qR(M,N)− e≤−depthR(X)≤ qR(M,N) and qR(M,N) = ∞ if and only if depthR(X) =−∞.

Therefore, if the derived depth formula holds, that is, if depthR(M)+depthR(N)−depth(R)= depthR(X),
then qR(M,N)< ∞. In other words, if qR(M,N) = ∞, then the derived depth formula for M and N fails.

Example 3.7. Let R = k[[t3, t4, t5]] and assume |k| = ∞, for example, k = C. Then R is a non-regular
Cohen-Macaulay local ring with minimal multiplicity. So, qR(k,k) = ∞ and red-CI-dimR(k) < ∞; see
[16, 2.14]. Moreover, by Remark 3.6, the derived depth formula fails for the pair (k,k).

Next we record an example of a local ring R and R-modules M and N such that qR(M,N) < ∞,
red-CI-dimR(M) =∞ = red-CI-dimR(N), and the derived depth formula for M and N fails. The example
we seek can be obtained as an immediate consequence of a construction of Jorgensen-Şega [32]:
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3.8. It is obtained in [32, 3.3] that there exists an Artinian Gorenstein local ring R and modules M and
T over R such that Ext1R(M,T ) 6= 0 = ExtiR(M,T ) for all i ≥ 2 (in the notations of [32], we set R = Aα

and T = T1; see [32, 3.1 and pages 475, 476, and 479] for these definitions and the construction of M).

Example 3.9. Let R, M, and T be as in 3.8. If red-CI-dimR(M)<∞, then Ext1R(M,T )= 0 by Proposition
4.9. So red-CI-dimR(M) = ∞. Note that ExtiR(M,T )∼= ExtiR(T

∗,M∗) for all i≥ 1; see, for example, [26,
2.2]. Therefore, we can use Proposition 4.9 once more and see that red-CI-dimR(T ∗) = ∞. Set N = T ∗.
Then qR(M,N) = 1 < ∞; see, for example [31, 2.7].

Next suppose depthR(M)+depthR(N) = depth(R)+depthR(M⊗L
R N), that is, the derived depth for-

mula for M and N holds. As R is Artinian, it follows that depthR(M)+depthR(N)−depth(R) = 0. Thus
depthR(M⊗L

R N) = 0. On the other hand, setting X = M⊗L
R N, we have that s = sup(X) = qR(M,N) = 1

and depthR
(
Hs(X)

)
= 0. Hence, 2.13(iii) shows that depthR(X) = depthR

(
Hs(X)

)
− s = −1. Conse-

quently, the derived depth formula for M and N fails (let us also note that the depth formula for M and
N holds trivially since R is Artinian.)

Remark 3.10. As it relates to Theorem 1.2 and to Question 3.5, we also mention the following result
established in [34]: There exists a Gorenstein local ring R and Tor-independent R-modules M and N
such that the depth formula (or equivalently, the derived depth formula in this context) does not hold for
M and N. This example relies on a construction by Jorgensen-Şega [33]; see [34] for the details.

4. SOME COROLLARIES AND FURTHER RESULTS

In this section we obtain some corollaries of Proposition 3.2 and Theorem 3.4, and also consider
further consequences of our results from sections 2 and 3.

Auslander [4] proved the following general version of the depth formula: If R is a local ring, and M
and N are R-modules such that qR(M,N)< ∞, then

depthR(M)+depthR(N) = depth(R)+depthR

(
TorR

qR(M,N)(M,N)
)
−qR(M,N)

provided that qR(M,N) = 0, or depthR

(
TorR

qR(M,N)
(M,N)

)
≤ 1. This version of the depth formula

was also studied in the literature. One such result is due to Bergh-Jorgensen; see [12, page 3] for the
definition of upper reducing degree reddeg∗M of M.

4.1. (Bergh-Jorgensen [12, 3.1]; see also [11, 3.4(i)]) Let R be a Cohen-Macaulay local ring and let M
and N be R-modules such that qR(M,N)< ∞. Assume at least one of the following conditions holds:

(i) depthR

(
TorR

qR(M,N)
(M,N)

)
= 0.

(ii) qR(M,N)≥ 1, depthR

(
TorR

qR(M,N)
(M,N)

)
≤ 1, and reddeg∗M ≥ 2.

If M has reducible complexity, then

depthR(M)+depthR(N) = depth(R)+depthR

(
TorR

qR(M,N)(M,N)
)
−qR(M,N).

Next, as a consequence of Proposition 3.2(iii) and Theorem 3.4, we generalize 4.1:

Corollary 4.2. Let R be a Cohen-Macaulay local ring and let M and N be R-modules such that
qR(M,N)< ∞ and depthR

(
TorR

qR(M,N)
(M,N)

)
≤ 1.

If red-CI-dimR(M)< ∞ (for example, M has reducible complexity), then

depthR(M)+depthR(N) = depth(R)+depthR

(
TorR

qR(M,N)(M,N)
)
−qR(M,N).

Proof. We set X = M⊗L
R N and q = qR(M,N). Then depthR

(
Hq(X)

)
= depthR

(
TorR

q (M,N)
)
≤ 1 and

sup(X) = q < ∞. Hence 2.13(iii) implies that depthR(X) = depthR

(
TorR

q (M,N)
)
−q. As we know by

Proposition 3.2(iii) that the derived depth formula holds for M and N, the claim follows. �
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Remark 4.3. Sadeghi [36, 3.2(ii)] proved that the conclusion of Corollary 4.2 holds over local rings
that are not necessarily Cohen-Macaulay provided that 1 ≤ qR(M,N) < ∞ and M has reducible com-
plexity. Corollary 4.2 is also due to Bergh [11, 3.4(i)] in case depthR

(
TorR

qR(M,N)
(M,N)

)
= 0 and M

has reducible complexity. �

We proceed and obtain some consequences of our results from sections 2 and 3. These consequences
do not directly imply the depth formula holds, but they contribute to the study of depth of tensor products
of modules.

For their study of the depth formula, Bergh-Jorgensen [12] proved the following results.

4.4. (Bergh-Jorgensen [12, 3.2 and 3.7]) Let R be a Cohen-Macaulay local ring and let M and N be
nonzero R-modules such that M and N are Tor-independent, that is, qR(M,N) = 0. Assume M has
reducible complexity. Assume further depthR(M⊗R N) 6= 0. Then the following hold:

(i) depthR(M) 6= 0.
(ii) If M is maximal Cohen-Macaulay and G-dimR(N)< ∞, then depthR(N) 6= 0. �

Thanks to Theorem 3.4, we can generalize 4.4 as follows:

Corollary 4.5. Let R be a Cohen-Macaulay local ring and let M and N be nonzero R-modules such that
M and N are Tor-independent, that is, qR(M,N) = 0. Assume red-CI-dimR(M)< ∞ (for example, M has
reducible complexity). Assume further depthR(M⊗R N) 6= 0. Then depthR(M) 6= 0 and depthR(N) 6= 0.

Proof. We know by Theorem 3.4 that depthR(M) + depthR(N) = depth(R) + depthR(M ⊗L
R N). As

qR(M,N) = 0, it follows that depthR(M) + depthR(N) = depth(R) + depthR(M⊗R N). Therefore, if
depthR(M) = 0, then depthR(N) = depth(R) + depthR(M⊗R N) > depth(R) = dim(R), which is not
possible. Hence depthR(M) 6= 0. Similarly, it follows that depthR(N) 6= 0. �

The preliminary results recorded in section 2 yield new results on the vanishing of Ext and Tor. As
a demonstration, we use 2.7 and 2.14, and prove the following; see [11, 3.3] for a similar result for
modules with reducible complexity.

Proposition 4.6. Let M and N be nonzero R-modules such that qR(M,N)< ∞.
(i) If red-CI-dimR(M)< ∞, then qR(M,N)≤ depth(R).

(ii) If red-CI-dimR(M)< ∞ and depthR(M)≤ depth(R), then

depth(R)−depthR(M)−depthR(N)≤ qR(M,N)≤ depth(R)−depthR(M).

Proof. Assume red-CI-dimR(M) < ∞. It follows from 2.7(i) that red-pdR(M) < ∞. Let {K0, . . . ,Kr}
be a reducing pd-sequence of M; see 2.3. Then pd(Kr) < ∞ and qR(M,N) = qR(Kr,N); see 2.14(ii).
Therefore, part (i) follows since we have

(4.6.1) qR(M,N) = qR(Kr,N)≤ pdR(Kr) = depth(R)−depthR(Kr)≤ depth(R).

Next assume depthR(M)≤ depth(R). Then depthR(M) = depth(Kr) so that (4.6.1) yields the inequal-
ity qR(M,N) ≤ depth(R)− depthR(M); see 2.14(i). As pdR(Kr) < ∞, the derived depth formula holds
for the pair (Kr,N); see 2.13(vi). Hence we have:

(4.6.2) depthR(Kr⊗L
R N) = depthR(Kr)+depthR(N)−depth(R).

Furthermore 2.13(iii) implies that:

(4.6.3) depthR(Kr⊗L
R N)≥−qR(M,N).

Thus (4.6.2) and (4.6.3) show that qR(M,N)≥ depth(R)−depthR(M)−depthR(N). Consequently, part
(ii) follows. �

We record some corollories of Proposition 4.6. Part (i) of the next corollary is known by [30, 2.3] if
CI-dimR(M)< ∞, while part (ii) follows from [6, 1.1] if pdR(M)< ∞.
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Corollary 4.7. Let M and N be R-modules such that qR(M,N)< ∞ and red-CI-dimR(M)< ∞.

(i) If depth(R) = depthR(M), then qR(M,N) = 0.
(ii) If depth(R)≥ depthR(M) and depthR(N) = 0, then qR(M,N) = depth(R)−depthR(M).

Proof. The claims follow immediately from Proposition 4.6(ii). �

Remark 4.8. Let M and N be R-modules such that qR(M,N) < ∞ and CI-dimR(M) < ∞. It follows
that qR(M,N)≤ CI-dimR(M) = depth(R)−depthR(M); see [30, 2.3]. Moreover, if depthR(N) = 0, then
qR(M,N) = depth(R)−depthR(M) by, for example, Corollary 4.7.

Let M and N be R-modules such that N 6= 0 and pR(M,N) = sup{i : ExtiR(M,N) 6= 0}. Assume
red-pdR(M) < ∞ and {K0, . . . ,Kr} is a reducing pd-sequence of M. Then it can be proven along the
same lines as in 2.14(ii) that pR(M,N) = pR(Kr,N). As pdR(Kr) < ∞, it follows from [8, 4.10] that
pR(Kr,N) = depth(R)−depthR(Kr). So, by 2.14(i), the following result holds:

Proposition 4.9. Let M and N be R-modules such that N 6= 0, depthR(M)≤ depth(R) and pR(M,N)<∞.
If red-CI-dimR(M)< ∞, then pR(M,N) = depth(R)−depthR(M).

Remark 4.10. Proposition 4.9 allows us to find examples of modules that do not have finite reducing
complete intersection dimension. For example, Jorgensen and Sega [32, page 475, 476 and 3.3] proved
that there exists an Artinian Gorenstein local ring R and R-modules M and N such that Ext1R(M,N) 6= 0
and ExtiR(M,N) = 0 for all i≥ 2. Therefore Proposition 4.9 implies that red-CI-dimR(M) = ∞. �

Recall that an R-module M is torsion, that is, M equals its torsion submodule, if and only if Mp = 0
for all p ∈ Ass(R). The next result is to be compared with [17, A2].

Corollary 4.11. Let M and N be R-modules. Assume red-CI-dimR(M) < ∞. If TorR
i (M,N) is torsion

for all i� 0, then TorR
i (M,N) is torsion for all i≥ 1.

Proof. Assume TorR
i (M,N) is torsion for all i� 0, and let p ∈ Ass(R). Then qRp(Mp,Np) < ∞. Also

red-CI-dimRp(Mp)< ∞ by Lemma 2.5. So Proposition 4.6(i) shows that qRp(Mp,Np)≤ depth(Rp) = 0,
that is, qRp(Mp,Np) = 0. This proves that TorR

i (M,N) is torsion for all i≥ 1. �

Corollary 4.12. Let R be a one-dimensional Cohen-Macaulay local ring and let M and N be nonzero
R-modules. Assume qR(M,N)< ∞ and red-CI-dimR(M)< ∞. Then the following are equivalent:

(i) qR(M,N) = 0.
(ii) M or N is torsion-free.

(iii) The depth formula holds, that is, depthR(M)+depthR(N) = depth(R)+depthR(M⊗R N).

Proof. It follows from Theorem 3.4 that part (i) implies part (iii). Now assume part (iii) holds. Then we
have that 2≥ depthR(M)+depthR(N) = 1+depthR(M⊗R N)≥ 1. So depthR(M) = 1 or depthR(N) = 1,
that is, M or N is torsion-free. Hence part (iii) implies part (ii).

Next assume part (ii) holds. We know qR(M,N)≤ 1; see Proposition 4.6(i). Suppose qR(M,N) 6= 0,
that is, qR(M,N) = 1. As depthR(TorR

1 (M,N))≤ 1, Corollary 4.2 yields

(4.12.1) depthR(M)+depthR(N) = 1+depthR(TorR
1 (M,N))−1 = depthR(TorR

1 (M,N)).

It follows from Corollary 4.11 that TorR
1 (M,N) is torsion, that is, TorR

1 (M,N) has finite length. Therefore
(4.12.1) gives the equality depthR(M)+depthR(N) = 0. This is not possible since M or N is torsion-free.
Consequently qR(M,N) = 0 so that part (ii) implies part (i). �

Remark 4.13. In Corollary 4.12, M and N are not necessarily both torsion-free. If R is a one-dimensional
Cohen-Macaulay local ring, M = R/xR for some non zero-divisor x on R, and N is a torsion-free R-
module, then M is torsion, qR(M,N) = 0, and depthR(M)+depthR(N) = depth(R)+depthR(M⊗R N).
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Next we consider the dependency formula of Jorgensen which is a generalization of the classical
Auslander-Buchsbaum formula (recall that depthR(0) = ∞).

4.14. (Jorgensen [29, 2.7]) Let M and N be nonzero R-modules. If qR(M,N)< ∞ and CI-dimR(M)< ∞,
then it follows:

qR(M,N) = sup
{

depth(Rp)−depthRp
(Mp)−depthRp

(Np) | p ∈ SuppR
(

TorR
qR(M,N)(M,N)

)}
.

Our next result, namely Theorem 4.15, generalizes 4.14 over Cohen-Macaulay rings and estab-
lishes Theorem 1.3. Note that Theorem 4.15 not only improves 4.14 by replacing the assumption
CI-dimR(M) < ∞ with red-CI-dimR(M) < ∞, but also it points out that qR(M,N) can be computed
by using the (finitely many) prime ideals in AssR

(
TorR

qR(M,N)
(M,N)

)
.

Theorem 4.15. Let R be a Cohen-Macaulay local ring and let M and N be nonzero R-modules. If
qR(M,N)< ∞ and red-CI-dimR(M)< ∞, then it follows:

qR(M,N) = sup
{

depth(Rp)−depthRp
(Mp)−depthRp

(Np) | p ∈ Spec(R)
}

= sup
{

depth(Rp)−depthRp
(Mp)−depthRp

(Np) | p ∈ AssR
(

TorR
qR(M,N)(M,N)

)}
.

Proof. We know red-pdR(M)< ∞ since we assume red-CI-dimR(M)< ∞; see 2.7(i). Let p ∈ Spec(R).
Then red-pdRp

(Mp) ≤ red-pdR(M) < ∞ by Lemma 2.5. Set X = Mp ⊗L
Rp

Np. Then it follows that
sup(X) = qRp(Mp,Np) ≤ qR(M,N) < ∞. Thus, by 2.13(iii), we have that depthR(X) ≥ −qRp(Mp,Np).
This yields:

(4.15.1) qR(M,N)≥ qRp(Mp,Np)≥−depth(Mp⊗L
Rp

Np).

As Rp is Cohen-Macaulay and qRp(Mp,Np) < ∞, Theorem 3.4 implies that the derived depth formula
holds for (Mp,Np) over Rp, that is, depthRp

(Mp) + depthRp
(Np) = depth(Rp) + depth(Mp ⊗L

Rp
Np).

Hence (4.15.1) implies that:

(4.15.2) qR(M,N)≥ depth(Rp)−depthRp
(Mp)−depthRp

(Np).

So qR(M,N) ≥ depth(Rq)− depthRq
(Mq)− depthRq

(Nq) for each q ∈ Spec(R); see (4.15.2). Conse-
quently we conclude that

qR(M,N)≥ sup
{

depth(Rp)−depthRp
(Mp)−depthRp

(Np) | p ∈ Spec(R)
}

(4.15.3)

≥ sup
{

depth(Rp)−depthRp
(Mp)−depthRp

(Np) | p ∈ AssR
(

TorR
qR(M,N)(M,N)

)}
.

Next let p ∈ Ass
(

TorR
qR(M,N)

(M,N)
)

. Then depthRp

(
TorRp

qR(M,N)
(Mp,Np)

)
= 0. As depthR(0) = ∞,

it follows that TorRp

qR(M,N)
(Mp,Np) 6= 0. Thus we deduce qR(M,N) = qRp(Mp,Np). Set Y = Mp⊗L

Rp
Np.

Then sup(Y ) = qRp(Mp,Np)< ∞ and depthRp

(
HqRp (Mp,Np)

(Y )
)
= depthRp

(
TorRp

qR(M,N)
(Mp,Np)

)
= 0.

So 2.13(iii) yields:

(4.15.4) depthRp
(Mp⊗L

Rp
Np) = depthRp

(Y ) = depthRp

(
HqRp (Mp,Np)

(Y )
)
−qRp(Mp,Np).

Recall, by Theorem 3.4, we have depthRp
(Mp)+depthRp

(Np) = depth(Rp)+depthRp
(Mp⊗L

Rp
Np).

So we conclude from (4.15.4) that

(4.15.5) qR(M,N) =−depthRp
(Mp⊗L

Rp
Np) = depth(Rp)−depthRp

(Mp)−depthRp
(Np).

As the equality in (4.15.5) is true for each associated prime ideal of TorR
qR(M,N)

(M,N), we deduce that

(4.15.6) qR(M,N) = sup
{

depth(Rp)−depthRp
(Mp)−depthRp

(Np) | p ∈ AssR
(

TorR
qR(M,N)(M,N)

)}
.
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Now (4.15.3) and (4.15.6) give the required conclusion. �

5. PROOFS OF 2.14, 2.15, AND 2.16

This section is devoted to the proofs of the preliminary results stated in section 2. Recall that R
denotes a commutative Noetherian local ring with unique maximal ideal m and residue field k, and all
R-modules are assumed to be finitely generated. Moreover, we define an R-complex as a complex of
finitely generated R-modules which is indexed homologically.

Proof of 2.14. Part (i) follows by the depth lemma so we proceed with the proofs of parts (ii) and (iii).
Set q = qR(M,N). The short exact sequence 0→ M⊕a → K → Ωn

RM⊕b → 0 induces a long exact
sequence in Tor modules, which implies the vanishing of TorR

i (K,N) for all i≥ q+1 and also yields the
exact sequence:

(2.14.1) 0→ TorR
q (M

⊕a,N)→ TorR
q (K,N)→ TorR

q (Ω
n
RM⊕b,N).

Hence, as TorR
q (M,N) 6= 0, it follows that TorR

q (K,N) 6= 0. This proves q = qR(K,N).
Assume n ≥ 1. Then TorR

q (Ω
n
RM⊕b,N) = 0. Hence (2.14.1) yields TorR

q (M
⊕a,N) ∼= TorR

q (K,N) and
shows that depthR

(
TorR

q (M,N)
)
= depthR

(
TorR

q (K,N)
)
, as required.

Next we assume depthR
(

TorR
q (M,N)

)
≤ 1 and n = 0. We observe that (2.14.1) yields two exact

sequences:

(2.14.2) 0→ TorR
q (M

⊕a,N)→ TorR
q (K,N)→ X → 0 and 0→ X → TorR

q (M
⊕a,N).

If depthR(TorR
q (M,N)) = 0, then the leftmost exact sequence in (2.14.2) implies that the depth of

TorR
q (K,N) is zero. Thus we may assume depthR

(
TorR

q (M,N)
)
= 1. In that case depthR(X)≥ 1 due to

the rightmost exact sequence in (2.14.2). So it follows that

depthR
(

TorR
q (K,N)

)
≥min{depthR

(
TorR

q (M,N)
)
,depthR(X)}= 1.

If depthR
(

TorR
q (K,N)

)
≥ 2 = 1+ depthR

(
TorR

q (M,N)
)
, then the depth lemma applied to the leftmost

exact sequence in (2.14.2) implies that depthR
(

TorR
q (M,N)

)
= depthR(X)+ 1 ≥ 2, which is not true.

Consequently, we conclude that depthR
(

TorR
q (K,N)

)
= 1 = depthR

(
TorR

q (M,N)
)
. �

We make use of the following lemma for the proof of 2.15.

Lemma 5.1. Let Y be a homologically bounded R-complex, x ∈ m, and let K = (0→ R x−→ R→ 0) be
the Koszul complex on x. Then depthR(Y ⊗L

R K) = depthR(Y )−1.

Proof. Note that we have the exact triangle Y x−→ Y → Y ⊗L
R K→ Y [1]. Given i ≥ 0, this exact triangle

yields the following exact sequence of R-modules:

(5.1.1) Exti−1
R (k,Y )→ Exti−1

R (k,Y ⊗L
R K)→ ExtiR(k,Y )

x−→ ExtiR(k,Y ).

Set n = depthR(Y ). Then, as the map on ExtnR(k,Y ) given by multiplication by x is zero, (5.1.1)
implies that Extn−1

R (k,Y ⊗L
R K)∼= ExtnR(k,Y ). So Extn−1

R (k,Y ⊗L
R K) 6= 0. Also, if i≤ n−2, then (5.1.1)

shows that ExtiR(k,Y ⊗L
R K) = 0. Thus depthR(Y ⊗L

R K) =−supRHomR(k,Y ⊗L
R K) = n−1. �

Proof of 2.15. We may assume M and N are nonzero. Hence, since qR(M,N) < ∞, depths of the com-
plexes in parts (i) and (ii) are finite; see 2.13(ii) and 2.14(iii). Set S = R/xR. Then we have the following
quasi-isomorphisms:

(M⊗L
R N)⊗L

R S' (M⊗L
R S)⊗L

R N '
(
(M⊗L

R S)⊗L
S S
)
⊗L

R N

' (M⊗L
R S)⊗L

S (N⊗L
R S)(2.15.1)

' (M/xM)⊗L
S (N/xN)
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Here the last quasi-isomorphism in (2.15.1) holds since M⊗L
R S ' M/xM and N⊗L

R S ' N/xN due to
the fact that x is a non-zero divisor on R, M, and N.

Now (2.15.1) and Lemma 5.1 yield

depthR(M⊗L
R N)−1 = depthR

(
(M⊗L

R N)⊗L
R S
)
= depthR

(
(M/xM)⊗L

S (N/xN)
)

(2.15.2)

= depthS

(
(M/xM)⊗L

S (N/xN)
)
.

Here the last equality in (2.15.2) holds as depthS(X) = depthR(X) for each S-complex X ; see [28,
5.2(1)]. Moreover, we know depthS(M/xM) = depthR(M)− 1 and depthS(N/xN) = depthR(N)− 1;
see, for example, [13, 1.2.10(d)]. Consequently we use (2.15.2) and deduce

depthR(M)+depthR(N) =depth(R)+depthR(M⊗L
R N)⇐⇒

depthR(M)−1+depthR(N)−1 =depth(R)−1+depthR(M⊗L
R N)−1⇐⇒

depthS(M/xM)+depthS(N/xN) =depth(S)+depthS(M/xM⊗L
S N/xN).

This proves the equivalence of part (i) and part (ii). �

To prove 2.16, we first make an observation:

Remark 5.2. Let M and N be R-modules such that qR(M,N)< ∞.
Consider the syzygy short exact sequence 0→ ΩRM→ F → M→ 0, where F is a free R-module.

This sequence yields the exact triangle

(5.2.1) ΩRM⊗L
R N→ F⊗L

R N→M⊗L
R N→ (ΩRM⊗L

R N)[1].

As depthR(F⊗L
R N) = depthR(N) and depthR

(
(M⊗L

R N)[−1]
)
= depthR(M⊗L

R N)+1, the derived depth
lemma 2.13(iv)(a) applied to (5.2.1) yields

depthR(ΩRM⊗L
R N)≥min

{
depthR(N),depthR(M⊗L

R N)+1
}
.

This argument shows that, for each integer n≥ 1, we can use induction on n and deduce:

depthR(Ω
n
RM⊗L

R N)≥min
{

depthR(N),depthR(M⊗L
R N)+n

}
.

Now we can give a proof of 2.16.

Proof of 2.16. The given exact sequence 0→M⊕a→ K→Ωn
RM⊕b→ 0 yields the exact triangle:

(2.16.1) (M⊗L
R N)⊕a→ K⊗L

R N→ (Ωn
RM⊗L

R N)⊕b→ (M⊗L
R N)⊕a[1].

Note, as qR(M,N) < ∞, depths of the complexes in (2.16.1) are all finite; see 2.13(ii) and 2.14(i). The
derived depth lemma 2.13(iv)(b) applied to (2.16.1) establishes the first inequality of the following:

depthR(K⊗L
R N)≥min{depthR(M⊗L

R N),depthR(Ω
n
RM⊗L

R N)}

≥min{depthR(M⊗L
R N),depthR(N),depthR(M⊗L

R N)+n}(2.16.2)

= min{depthR(M⊗L
R N),depthR(N)}.

Here, in (2.16.2), the second inequality holds due to Remark 5.2.
As depthR(M) ≤ depth(R), we have depthR(K) = depthR(M) so that depthR(K) ≤ depth(R); see

2.14(i). Then, since the derived depth formula holds for K and N, we obtain

(2.16.3) depthR(N) = depth(R)−depthR(K)+depthR(K⊗L
R N)≥ depthR(K⊗L

R N).
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The derived depth lemma 2.13(iv)(a) applied to (2.16.1) establishes the first inequality of:

depthR(M⊗L
R N)≥min{depthR(K⊗L

R N),depthR(Ω
n
RM⊗L

R N)+1}

≥min{depthR(K⊗L
R N),depthR(M⊗L

R N)+n+1,depthR(N)+1}(2.16.4)

= depthR(K⊗L
R N).

Here, in (2.16.4), we obtain the second inequality and the equality by using Remark 5.2 and (2.16.3),
respectively. Now, since depthR(K⊗L

R N) cannot exceed both depthR(N) and depthR(M⊗L
R N), we con-

clude that min{depthR(M⊗L
R N),depthR(N)} ≥ depthR(K⊗L

R N); see (2.16.3) and (2.16.4). Therefore,
in view of (2.16.2), we see that depthR(K⊗L

R N) = min{depthR(M⊗L
R N),depthR(N)}. �
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[32] David A. Jorgensen and Liana M. Şega. Nonvanishing cohomology and classes of Gorenstein rings. Adv. Math., 188(2):470–

490, 2004. 8, 9, 11
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