
SOME CHARACTERIZATIONS OF LOCAL RINGS VIA REDUCING DIMENSIONS

OLGUR CELIKBAS, SOUVIK DEY, TOSHINORI KOBAYASHI, AND HIROKI MATSUI

ABSTRACT. In this paper we study homological dimensions of finitely generated modules over commuta-
tive Noetherian local rings, called reducing homological dimensions. We obtain new characterizations of
Gorenstein and complete intersection local rings via reducing homological dimensions. For example, we
extend a classical result of Auslander and Bridger, and prove that a local ring is Gorenstein if and only if
each finitely generated module over it has finite reducing Gorenstein dimension. Along the way, we prove
various connections between complexity and reducing projective dimension of modules.

1. INTRODUCTION

Throughout all rings, usually denoted by R or S, are assumed to be commutative, Noetherian, and
local and all modules are assumed to be finitely generated. Denote by modR the category of R-modules.

Homological dimensions such as the projective dimension pdR, the Gorenstein dimension G-dimR,
and the complete intersection dimension CI-dimR are invariants that assign an element of N∪{∞,−∞}
to an isomorphism class of R-modules. An R-module M with pdR(M) < ∞ (resp. G-dimR(M) < ∞,
resp. CI-dimR(M)< ∞) has the similar property with the modules over regular (resp. Gorenstein, resp.
complete intersection) rings. The most important property is the following theorem, which gives a
characterization of local rings via such homological dimensions.

Theorem 1.1. [27, Théorème 3][5, (1.4.9)] [4, Theorem 4.20] Let (R,m,k) be a local ring. The follow-

ing are equivalent:

(i) R is regular (resp. Gorenstein, resp. complete intersection)

(ii) pdR(M)< ∞ (resp. G-dimR(M)< ∞, resp. CI-dimR(M)< ∞) for each R-module M.

(iii) pdR(k)< ∞ (resp. G-dimR(k)< ∞, resp. CI-dimR(k)< ∞)

Reducing homological dimensions were introduced by Araya and Celikbas [1], and subsequently
with a weaker condition by Araya and Takahashi [3]. Although the finiteness of reducing homological
dimensions is a quite weaker condition than the finiteness of the corresponding homological dimen-
sions, several known results for modules with finite homological dimensions have been generalized to
modules with finite reducing homological dimensions; see [1, 2, 3, 11]. Therefore, studying reducing
homological dimensions is an important task in commutative algebra.
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Keeping in mind Theorem 1.1, it is natural to ask that whether we can prove the similar result using
reducing homological invariants instead of using homological dimensions. As we will see in 2.7 that
red-pdR(M) < ∞ if and only if red-CI-dimR(M) < ∞ for an R-module M, it suffices to consider the
reducing projective dimension red-pd and the reducing Gorenstein dimension red-G-dim. Thus we
consider the following question.

Question 1.2. Let R be a local ring. If red-pdR(M)< ∞ (resp. red-G-dimR(M)< ∞) for each R-module
M, then must R be a complete intersection (resp. Gorenstein)?

For the reducing Gorenstein dimension, we obtain a complete answer to Question 1.2, which gener-
alizes both [1, Corollary 3.2] and Theorem 1.1.

Theorem 1.3. (Theorem 3.12) Let (R,m,k) be a local ring. Then the following are equivalent:

(i) R is Gorenstein.
(ii) red-G-dimR(M)< ∞ for each R-module M.

(iii) There exists a resolving subcategory X of modR containing k such that red-G-dimR(M)< ∞ for
each M ∈ X . □

Here, a full subcategory X of modR is said to be resolving if it is closed under taking direct summands,
extensions, kernels of epimorphisms, and containing R. The reason why a resolving subcategory appears
in (iii) is that finiteness of reducing homological dimension is ill-behaved with respect to short exact
sequences (see Example 2.5 and Example 2.6 for instance). In fact, our result Theorem 3.12 contains
more than Theorem 1.3 as it also shows that R is Gorenstein if red-G-dimR(TrR Ωn

Rk) < ∞ for some
n ≥ depthR (where TrR(−) denotes the Auslander-Bridger transpose).

It is known that each module over a local complete intersection ring of codimension c has finite
reducing projective dimension of at most c; see [8]. In this paper we investigate whether or not the
converse of this fact is true, and whether one can obtain a characterization of complete intersection
property via reducing projective dimensions. For small c, we obtain the following result.

Theorem 1.4. (Theorem 4.1) Let (R,m,k) be a local ring and let c ≤ 2. Then the following are equiva-
lent:

(i) R is a complete intersection of codimension at most c.
(ii) red-pdR(M)≤ c for each R-module M.

(iii) R is Gorenstein and red-pdR(k)≤ c. □

Similar to Theorem 3.12, Theorem 1.4 also contains a characterization in terms of red-pdR(TrR Ωn
Rk).

We now briefly describe the structure of the paper.
In Section 2, we recall preliminary definitions, notations, and results related to reducing homological

dimensions, and reducible complexity [8].
In Section 3, we prove Theorem 3.12 regarding characterization of Gorenstein rings via reducing

Gorenstein dimension, part of which was highlighted above. One of the main ingredients in the proof
of this is Theorem 3.9 which states that if a module M of finite reducing Gorenstein dimension belongs
to a resolving subcategory X such that X contains all totally reflexive modules, and every module in
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X has depth at least the depth of the ring, then M ∈ ΩX . We also deduce various other consequences
of Theorem 3.9.

In Section 4, we prove Theorem 4.1. Along the way, we show in Corollary 4.3, that for a module of
finite complexity, the complexity is bounded above by the reducing projective dimension. The proof of
this result, and that of the main result Theorem 4.1 of this section heavily relies on a technical result,
namely Theorem 4.2, which gives some connection between complexities of two modules M and K

when they fit into an exact sequence of the form 0 → M⊕a → K → Ωn
RM⊕b → 0.

2. DEFINITIONS AND EXAMPLES

Given a ring R, we denote by (−)∗ the R-dual functor HomR(−,R) of R-modules. For an R-module
M and an integer i ≥ 0, we denote by Ωi

RM the i-th syzygy module in a minimal free resolution of M.
Whenever the ring R is clear from the context, we only write ΩiM in place of Ωi

RM.
First we recall the definition of complete intersection dimension and its related concepts. For the

other homological dimension such as Gorenstein dimension G-dim, we refer the reader to [12].

2.1. (Complete intersection dimension [5, 1.2]) Let R be a ring and let M be an R-module. Define the
complete intersection dimension of M as

CI-dimR(M) := inf{pdS(M⊗R R′)−pdS R′ | R → R′ ↞ S is a quasi-deformation}.

Here a diagram R → R′ ↞ S of local ring maps is a quasi-deformation if R → R′ is flat, R′ ↞ S is
surjective such that its kernel is generated by an S-regular sequence. Note that, if R is a complete
intersection ring, then it follows by definition that CI-dimR(M)< ∞.

It is shown in [5, Theorem 1.4] that there are inequalities

(2.1.1) G-dimR(M)≤ CI-dimR(M)≤ pdR(M)

for any R-module M.

2.2. (Complexity and reducible complexity [7, 4.2] and [8]) Let R be a local ring and let M be an
R-module. The complexity cxR(M) of M is defined by the smallest integer r ≥ 0 such that there exists
a real number A with βn(M)≤ A ·nr−1 for all n ≫ 0, where βn(M) denotes the nth Betti number of M.
(If there do not exist such integer r, we have cxR(M) = ∞ by convention). Note that cxR(M) = 0 if and
only if pdR(M)< ∞, and cxR(M)≤ 1 if and only if M has bounded Betti numbers.

The module M is said to have reducible complexity if either pdR(M) < ∞, or 0 < cxR(M) < ∞ and
there is an integer r ≥ 1 and short exact sequences of R-modules

{0 → Ki → Ki+1 → Ω
ni
R Ki → 0}r

i=0

where K0 = M, pdR(Kr)< ∞, and cxR(Ki+1)< cxR(Ki) for each i = 0,1, . . . ,r−1.
The original definition of reducible complexity [8, Definition 2.1] requires depthR(Ki) = depthR(M)

for each i. Note that this condition holds automatically when R is Cohen-Macaulay (see [8, Remark
after Definition 2.1]). However, as we do not need this depth condition for our arguments, we do not
include it in the definition.
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2.3. ([8, Proposition 2.2]) If an R-module has finite complete intersection dimension, then M has re-
ducible complexity. □

Motivated by this definition, Araya-Celikbas introduced the following concept.

2.4. (Reducing homological dimensions [1, Definition 2.1] and [3, Definition 2.5]) Let R be a local ring,
M be an R-module, and let H-dim be a homological dimension of R-modules, for example, H-dimR ∈
{pdR,CI-dimR,G-dimR}.

We write red-H-dimR(M)< ∞ provided that

(a) H-dimR(M)< ∞, or
(b) H-dimR(M) =∞ and there exist integers r,ai,bi ≥ 1, ni ≥ 0, and short exact sequences of R-modules

of the form

(2.4.1) 0 → K⊕ai
i−1 → Ki → Ω

ni
R K⊕bi

i−1 → 0

for each i = 1, . . .r, where K0 = M and H-dim(Kr)< ∞. In this case, we call {K0, . . . ,Kr} a reducing

H-dim-sequence of M.

The reducing homological dimension red-H-dimR(M) of M is defined as follows: If H-dimR(M) =∞,
we set

red-H-dimR(M) := inf{r ∈ N : there is a reducing H-dim-sequence K0, . . . ,Kr of M}

and we set red-H-dimR(M) := 0 if H-dimR(M) < ∞. We note that our definition is more relaxed from
that of [1, 2.1] and aligns with [3, 2.5] in that we take ni ≥ 0 instead of ni > 0.

It follows from the inequalities (2.1.1) that there are inequalities

red-G-dimR(M)≤ red-CI-dimR(M)≤ red-pdR(M)

for any R-module M. □

Unlike homological dimensions, finiteness of reducing homological dimensions is not compatible
with short exact sequences. The following two examples show that finiteness of reducing homolog-
ical dimensions are not in general closed under extensions, kernels of epimorphisms or cokernels of
monomorphisms.

Example 2.5. Here we give a family of examples (of ring of every dimension) showing finiteness of
red-pd or red-G-dim is not in general closed under taking extensions.

Let (R,m,k) be a local Cohen–Macaulay ring of dimension d, and minimal multiplicity, admitting
a canonical module ωR, and assume k is infinite. Then, we have m2 = (x1, · · · ,xd)m. Write R =

R/(x1, · · · ,xd) which has maximal ideal m/(x1, · · · ,xd) and canonical module ωR
∼= ωR/(x1, · · · ,xd)ωR.

We have a short exact sequence of R and R-modules

0 →mωR → ωR → ωR
mωR

→ 0

where the right most module is clearly a k-vector space, and the left most module is also a k-vector space
since m2 = (x1, · · · ,xd)m. Hence both the left and right most modules have finite reducing projective
dimension due to [11, Theorem 1.2]. However, if red-G-dimR(ωR) < ∞, then by [11, Proposition 3.9.
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and 3.13] we obtain red-G-dimR(ωR) ≤ red-G-dimR(Ω
d
RωR)+ d < ∞. But then R is Gorenstein by [1,

Corollary 3.3], and hence R is Gorenstein. Consequently, if R is not Gorenstein, then red-G-dimR(ωR) =

∞ = red-pdR(ωR). Applying 3.1(i) to this same exact sequence and using [11, 3.8 and 3.13], we get an
exact sequence showing finiteness of red-pd or red-G-dim is not in general closed under cokernels of
monomorphisms.

Example 2.6. Now we give a family of examples (of ring of every positive dimension) showing finite-
ness of red-pd or red-G-dim is not in general closed under kernels of epimorphisms. Let (R,m,k) be
a local 1-dimensional Cohen–Macaulay, non-Gorenstein ring admitting a canonical ideal ωR. Also as-
sume R has minimal multiplicity and EndR(m) is a Gorenstein ring. An explicit example of such a ring
is R = k[[te, te+1, · · · , t2e−1]], where e ≥ 3 is an integer (see [18, Example 3.13]). By [18, Theorem 5.1]
and [20, Theorem 1.4 and Corollary 1.5], we get an exact sequence 0 → ωR → m → k → 0. Now let
S := R[[x2, · · · ,xd ]], where d ≥ 1 (if d = 1, we interpret S as R itself). As S is flat over R, we obtain an
exact sequence 0 → S⊗R ωR → S⊗R m→ S⊗R k → 0. As S/mS ∼= k[[x2, · · · ,xd ]] is Gorenstein, so by
[10, Theorem 3.3.14] we get S⊗R ωR ∼= ωS. Hence the exact sequence becomes

0 → ωS → S⊗R m→ S⊗R k → 0.

Now as R has minimal multiplicity, so red-pdR k and red-pdRm are finite by [11, Theorem 1.2 and Corol-
lary 3.13]. Hence red-pdS(S⊗R m) and red-pdS(S⊗R k) are finite by [11, Corollary 3.2]. Now since
S/(x2, · · · ,xd)∼= R is not Gorenstein, so S is not Gorenstein, and thus red-pdS ωS = red-G-dimS ωS = ∞

by [1, Corollary 3.3].

2.7. For an R-module M, red-CI-dimR(M)<∞ if and only if red-pdR(M)<∞. Indeed, the if part follows
from the inequality red-CI-dimR(M)≤ red-pdR(M).

Conversely, suppose red-CI-dimR(M) < ∞. If red-CI-dimR(R) = 0 i.e., CI-dimR(M) < ∞, then M

has reducible complexity and hence it has finite reducing projective dimension from the definition. If
0 < red-CI-dimR(R) < ∞, then we can take a reducing CI-dim-sequence {K0, . . . ,Kr} of M. Then Kr

has finite complete intersection dimension and hence it has a finite reducing projective dimension as
above. Therefore, we get a reducing pd-sequence of M by connecting the reducing CI-dim-sequence
{K0, . . . ,Kr} of M and the reducing pd-sequence of Kr. This conclude that M has finite reducing pro-
jective dimension. □

For the rest of this paper, we will concentrate on red-pd and red-G-dim. We will often use the
following property from [11, Proposition 3.8].

2.8. Let H-dim = pd or G-dim. Then, for any R-module M and free R-module F , we have
red-H-dim(M) = red-H-dim(M⊕F). □

The following relations between the (reducible) complexity and the reducing projective dimension
will be obtained in Corollary 4.3.

2.9. Let R be a local ring and let M be an R-module.

(i) If cxR(M)< ∞, then it follows that cxR(M)≤ red-pdR(M).
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(ii) If M has reducible complexity, then cxR(M) = red-pdR(M). □

The reducing projective dimension of a module of finite complete intersection dimension is bounded
by the codepth of the ring. More precisely, in view of 2.9, one has:

2.10. Let R be a local ring and let M be an R-module. Assume CI-dimR(M)< ∞. Then,

(i) M has reducible complexity; see [8, Proposition 2.2]
(ii) cxR(M) = red-pdR(M)≤ embdim(R)−depth(R); this follows from part (i), 2.9, and [5, 5.6].

(iii) If red-pdR(M) = embdim(R)−depth(R), then R is a complete intersection ring; this follows from
(ii), and [5, 5.6]. □

It is worth noting that the inequality in 2.9(i) may fail if the module in question does not have finite
complexity; indeed, for a local ring (R,m,k) with m2 = 0, we always have red-pd(k)< ∞ ([1, Proposi-
tion 2.5]). Similarly, the equality in 2.9(ii) may fail if the module in question does not have reducible
complexity: the module in the next example has finite complexity, but it does not have finite reducing
projective dimension (and hence the module does not have reducible complexity). This shows that, for
a module, having finite complexity and having finite reducing projective dimension are independent
conditions, in general.

Example 2.11. Jorgensen and Şega [19] constructed a local Artinian ring R and an R-module M such
that cxR(M)< ∞ = G-dimR(M) and ExtiR(M,R) = 0 for all i ≥ 1. It follows that red-G-dimR(M) = ∞ as
otherwise the vanishing of ExtiR(M,R) forces M to have finite Gorenstein dimension; see [1, 1.3]. □

3. TESTING THE GORENSTEIN PROPERTY VIA REDUCING GORENSTEIN DIMENSION

In this section, we concern reducing Gorenstein dimension and prove the first main theorem, which
has been advertised in the introduction.

3.1. Let R be a local ring and 0 → A → B →C → 0 be a short exact sequence of R-modules. Then, the
following hold:

(i) There exists a short exact sequence 0 → ΩRC → A⊕F → B → 0 with some free R-module F .
(ii) There exists a short exact sequence 0 → ΩRB → ΩRC⊕G → A → 0 with some free R-module G.

(iii) For each i ≥ 0, there exists a short exact sequence 0 → Ωi
RA → Ωi

RB⊕Hi → Ωi
RC → 0 with some

free R-module Hi.

Proof. (i) and (iii) follow from [15, Proposition 2.2]. For part (ii), we consider the following pull-back
diagram obtained via the exact sequences 0 → ΩRB → F → B → 0 by 0 → A → B →C → 0:
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0

��

0

��

0 // ΩRB // X //

��

A

��

// 0

0 // ΩRB // F //

��

B //

��

0

C

��

C

��

0 0
The middle column yields X ∼= ΩRC⊕G for some free R-module G. Hence, the required short exact

sequence follows from the upper row. □

3.2. Recall that modR denotes the category of finitely generated R-modules. Let X be a full and strict
subcategory of modR. Given an integer n ≥ 1, by ΩnX , we denote the subcategory of all R-modules M

for which there exists an exact sequence 0 → M → Pn−1 → ··· → P0 → N → 0, where N ∈ X and each
Pi is a finitely generated projective (=free when R is local) R-module. Moreover, we put Ω0X = X .
We always have Ωm(ΩnX ) = Ωm+nX . We also often denote Ωn(modR) by Syzn(R).

We say that X is additive if it is closed under direct summands and finite direct sums. We say that
X is extension-closed (resp. closed under kernels of epimorphisms) if given any short exact sequence
0 → N → L → M → 0, we have M,N ∈ X =⇒ L ∈ X (resp. M,L ∈ X =⇒ N ∈ X ). We say X is
resolving if X is additive, R∈X , and X is closed under both extensions and kernels of epimorphisms.

3.3. An R-module M is said to satisfy (S̃n) (resp. (Sn)) if depthRp
(Mp) ≥ inf{n,depth(Rp)} (resp.

depthRp
(Mp) ≥ inf{n,dim(Rp)}) for all p ∈ Spec(R). We denote by S̃n(R) (resp. Sn(R)) the collection

of all R-modules that satisfy (S̃n) (resp. (Sn)). It is easy to observe (by the depth lemma etc.) that S̃n(R)

is a resolving subcategory of modR. We note that R satisfy (Sn) if and only if S̃n(R) = Sn(R).

Definition 3.4. For an R-module M we denote by TrR M the (Auslander-Bridger) transpose of M. This

is defined as follows. Take a presentation P1
f−→ P0 → M → 0 by finitely generated projective R-modules

P1,P0. Dualizing this by R, we get an exact sequence 0 → M∗ → P∗
0

f ∗−→ P∗
1 → TrR M → 0, that is, TrR M

is the cokernel of the map f ∗. It is clear that TrR M is also finitely generated. The transpose of M is
uniquely determined up to projective summands; see [4] for basic properties. When the ring in question
is clear, we simply write Tr in place of TrR.

3.5. An R-module M is said to be n-torsionfree if ExtiR(TrR M,R) = 0 for all i = 1, . . .n. We denote by
TFn(R) the full subcategory of modR consisting of n-torsionfree R-modules.

3.6. ([17, Proposition 2.4]) We always have inclusions TFn(R)⊆ Syzn(R)⊆ S̃n(R). Moreover, if Mp is
totally reflexive for prime ideals p with depthRp < n and satisfies (S̃n), then M is n-torsionfree.
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For a local ring R, let C (R) denote the full subcategory of all R-modules M such that depthR(M) ≥
depth(R)1. It is easily observed that C (R) is a resolving subcategory of modR, and S̃n(R) ⊆ C (R)

for all n ≥ depth(R). When R is local Cohen–Macaulay, it holds that S̃n(R) = Sn(R) = C (R) for all
n ≥ depth(R) and this is nothing but the category of maximal Cohen-Macaulay R-modules. In general,
for n ≥ depthR, the inclusion S̃n(R)⊆ C (R) can be strict.

We need the following preliminary result and its consequence to prove the main result of this section.

Lemma 3.7. Let X be an extension-closed subcategory of modR. If 0 → M → K → N → 0 is a short
exact sequence such that K ∈ ΩX and N ∈ X . Then it follows that M ∈ ΩX .

Proof. By assumption, we have a short exact sequence 0 → K → F → K′ → 0, where F is free and
K′ ∈ X . This yields a pushout diagram as follows:

0

��

0

��

0 // M // K //

��

N //

��

0

0 // M // F //

��

C //

��

0

K′

��

K′

��

0 0

Note, as X is extension-closed and N,K′ ∈ X , it follows that C ∈ X . Thus 0 → M → F → C → 0
implies M ∈ ΩX . □

Although the following result is recorded in [16, 3.1(2)], we give another proof based on Lemma 3.7.

Corollary 3.8. Let X be a resolving subcategory of modR. Then ΩX is additive (i.e., it is closed

under finite direct sums, and direct summands).

Proof. Since X is closed under finite direct sums, hence so is ΩX . We only need to show that if
M,N ∈ modR such that M⊕N ∈ ΩX , then M ∈ ΩX . Indeed, if M⊕N ∈ ΩX , then M⊕N ∈ X as
X is resolving, and therefore M,N ∈ X . From the split exact sequence 0 → M → M⊕N → N → 0, in
view of Lemma 3.7, we get M ∈ ΩX . □

We denote by G (R) the category of totally reflexive modules ([12]). Note that ΩG (R) = G (R) (see
[12, Lemma 1.1.10 and Theorem 4.1.4]). Moreover, by the Auslander-Bridger formula [12, Theorem
1.4.8], we have the inclusion G (R) ⊆ C (R). Conversely, if M has finite Gorenstein dimension and
belongs to C (R), then M is totally reflexive by Auslander-Bridger formula.

Now we state and prove the first main result of this section which will be frequently used in the
proofs of the rest of the results of this section.

1R-modules we consider here are called deep in [14] and the category C (R) is denoted by Deep(R) there.
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Theorem 3.9. Let R be a local ring and let X be a resolving subcategory of modR such that G (R)⊆
X ⊆ C (R). If M is an R-module with red-G-dimR(M)< ∞, then M ∈ X if and only if M ∈ ΩX .

Proof. Note it is enough to assume M ∈ X and show that M ∈ ΩX . Hence we assume M ∈ X . First
we note that G (R) = ΩG (R)⊆ ΩX . It follows, as red-G-dimR(M)< ∞, there are short exact sequences
of R-modules

(3.9.1) Ei = (0 → K⊕ai
i−1 → Ki → Ω

ni
R K⊕bi

i−1 → 0)

for each i = 1, . . .r, where a1, . . . ,ar,b1, . . . ,br are positive integers, n1, . . . ,nr are non-negative integers,
K0 = M, and G-dimR(Kr) < ∞. As X is resolving, so is each Ki ∈ X . In particular, Kr ∈ X ⊆
C (R) and thus G-dim(Kr) < ∞ implies that Kr is totally reflexive. Consequently, Kr ∈ G (R) ⊆ ΩX .
Since Ω

nr
R K⊕br

r−1 ∈ X and Kr ∈ ΩX , K⊕ar
r−1 ∈ ΩX by Lemma 3.7 applied to Er. Then, Kr−1 ∈ ΩX by

Corollary 3.8. Similar argument applied to Er−1 shows Kr−2 ∈ ΩX and so on. Continuing this way,
we get M = K0 ∈ ΩX . □

The following is an interesting consequence of Theorem 3.9.

Corollary 3.10. Let R be a local ring and let X be a resolving subcategory of modR with G (R)⊆ X .

Then the following conditions are equivalent:

(i) G-dimR(M)< ∞ for each M ∈ X .

(ii) red-G-dimR(M)< ∞ for each M ∈ X .

(iii) There exists n ≥ depthR such that red-G-dimR(M)< ∞ for each M ∈ X ∩ S̃n(R).

In particular, for a resolving subcategory X of C (R) with G (R) ⊆ X , X = G (R) if and only if

red-G-dimR(M)< ∞ for each M ∈ X .

Proof. Set t = depthR. Assume (i), and let M ∈ X . Then ΩtM is totally reflexive by assumption of (i).
Hence, G-dimR M < ∞, and so red-G-dimR M < ∞. This shows the implication (i) =⇒ (ii). On the other
hand, the implication (ii) =⇒ (iii) is obvious.

Now, assume that (iii) holds. The assumptions on X imply that Y := X ∩ S̃n(R) is a resolving
subcategory of C (R) and Y contains G (R). Then by Theorem 3.9, Y = ΩY and therefore Y =

ΩtY = G (R) holds. Therefore, the remained implication (iii) =⇒ (i) follows. □

Remark 3.11. Examples of resolving subcategories X that satisfy the hypothesis of Theorem 3.9
include X = S̃n(R) for n ≥ depthR, and also X = C (R).

Now we prove the main theorem of this section, characterizing Gorenstein local rings via reducing
G-dimension. In the following, for given subcategories X ,Y of modR, denote by X ∗Y the collection
of all modules L which fits into an exact sequence 0 → X → L → Y → 0, where X ∈ X ,Y ∈ Y .

Theorem 3.12. Let (R,m,k) be a local ring. Then the following conditions are equivalent:

(i) R is Gorenstein.

(ii) red-G-dimR(M)< ∞ for each R-module M.

(iii) There exists a resolving subcategory X of modR containing Ωn
Rk for some n ≥ 0 such that

red-G-dimR(M)< ∞ for each M ∈ X .
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(iv) There exists a category X ⊆ modR closed under extensions and containing R and Ωn
Rk ∈ X for

some n ≥ depthR, such that red-G-dimR(M)< ∞ for each M ∈ X .

(v) There exists n ≥ depthR such that red-G-dimM < ∞ for each M ∈ R∗Ωn
Rk.

(vi) There exists M ∈ C (R) such that idR(M)< ∞ and red-G-dimR(M)< ∞.

(vii) red-G-dimM < ∞ for each R-module M with Ωm
R M ∼= Ωn

Rk for some positive integers m and n.

(viii) There exists an integer n ≥ depthR such that red-G-dimR(TrR Ωn
Rk)< ∞.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) is obvious.
Now to show (v)=⇒ (i): Let t = depthR. We notice that R∗Ωn

Rk ⊆ S̃n(R)⊆ S̃t(R). Take an R-module
M ∈ R∗Ωn

Rk. Then M ∈ S̃t(R) and red-G-dimR(M) < ∞ by the assumption of (vi). Now, Theorem 3.9
and Remark 3.11 imply that M ∈ ΩS̃t(R). Then M ∼= ΩRN ⊕F for some N ∈ S̃t(R) and some free R-
module F . For any prime ideal p with depthRp < t, Mp is free (as p ̸=m and M is locally free on punc-
tured spectrum), and hence pdRp

Np ≤ 1. As N satisfies S̃t , it follows that depthNp ≥ inf{t,depthRp}=
depthRp. Due to the Auslander-Buchsbaum formula pdRp

Np = depthRp − depthNp ≤ 0, Np is free.
Now we have shown that Np is Rp-free for all prime ideal p satisfying depthRp < t. Therefore,
it follows from 3.6 that N ∈ Syzt(R), and so M ∼= ΩRN ⊕ F ∈ Syzt+1(R). Thus we conclude that
R∗Ωn

Rk ⊆ Syzt+1(R) and it implies that R is Gorenstein by [16, 5.4].
This shows that (i) through (v) are all equivalent.
To show (i) ⇐⇒ (vi), we only need to show (vi) =⇒ (i): So, assume red-G-dimR(M) < ∞ for some

M ∈C (R), where idR(M)<∞. Then, by Theorem 3.9 and Remark 3.11, we see M ∈ΩC (R). Therefore,
there is a short exact sequence of R-modules 0 → M → F → N → 0, where F is free and N ∈ C (R).
Since idR(M)< ∞ and N ∈ C (R), it follows Ext1R(N,M) = 0. Hence the short exact sequence 0 → M →
F → N → 0 splits so that M is free and hence R is Gorenstein.

To show (vii) ⇐⇒ (i), enough to show (vii) =⇒ (i): Let t = depthR. For an R-module M ∈ R∗Ωtk,
there is a short exact sequence 0 → R → M → Ωt

Rk → 0. This short exact sequence implies, by 3.1(i),
that F ⊕ΩRM ∼= Ω

t+1
R k for some free module F , and hence Ω2

RM ∼= Ω
t+2
R k. Therefore, the assumption

forces red-G-dimM < ∞ and hence R is Gorenstein by (v) =⇒ (i).
Finally, to show (viii) ⇐⇒ (i), enough to show (viii) =⇒ (i): Let t = depthR, and we assume there

exists an integer n ≥ t such that red-G-dimR(TrR Ωn
Rk) < ∞. Put M := TrR Ωn

Rk. We first show that M

can be embedded in a module of finite projective dimension. This is of course true if G-dimR M < ∞ by
[13, Lemma 2.17]. If G-dimR(M) = ∞, then by Definition 2.4 there exist integers r,ai,bi ≥ 1, ni ≥ 0,
and short exact sequences of R-modules of the form

(3.12.1) 0 → K⊕ai
i−1 → Ki → Ω

ni
R K⊕bi

i−1 → 0

for each i = 1, . . .r, where K0 =M and G-dim(Kr)<∞. Since Kr embeds in a module of finite projective
dimension, hence K⊕ar

r−1 embeds in a module of finite projective dimension, so Kr−1 embeds in a module
of finite projective dimension. Similarly, Kr−2 embeds in a module of finite projective dimension, and
continuing this way, M = K0 embeds in a module of finite projective dimension. So in any case, we
now see that M embeds into a module of finite projective dimension, say H. Now, since n ≥ t, so Ωn

Rk

satisfies (S̃t), so by [17, Proposition 2.4], we get ExtiR(M,R) = 0 for all 1 ≤ i ≤ t. Since pdR H ≤ t, so by



SOME CHARACTERIZATIONS OF LOCAL RINGS VIA REDUCING DIMENSIONS 11

[29, Lemma 2.2], we get M is torsion-less i.e. Ext1R(TrR M,R) = 0. Since TrTrΩn
Rk is stably isomorphic

with Ωn
Rk, we get Ext1R(Ω

n
Rk,R) = 0 i.e., Extn+1

R (k,R) = 0. By [25, II. Theorem 2] we get idR R < ∞ i.e.,
R is Gorenstein. □

Remark 3.13. The equivalence between (i) and (vi) has been proved in [1, Corollary 3.3(iii)], however,
our argument is simpler.

The following characterization of local complete intersection rings shows that assuming the sub-
category of all modules of finite red-G-dim contains a big enough subcategory which is closed under
extensions, imposes strong conditions on the ring.

Proposition 3.14. Let (R,m,k) be a d-dimensional local ring such that R̂ = S/(x1, . . . ,xn)S, where

(S,n,k) is local Cohen–Macaulay ring of minimal multiplicity, and x1, . . . ,xn ∈ n is an S-regular se-

quence. Then the following are equivalent:

(1) R is a complete intersection.

(2) red-pdR M < ∞ for all M ∈ modR.

(3) There exists a subcategory X ⊆ modR which is closed under extensions such that

{M ∈ TFd+1(R)|M is locally free on the punctured spectrum, and red-pdR M < ∞} ⊆ X

and

X ⊆ {M ∈ modR| red-G-dimR M < ∞}.

Proof. (1) =⇒ (2) =⇒ (3) is straightforward. Only need to prove (3) =⇒ (1): Assume the ex-
istence of a subcategory X as in (3). By hypothesis, R ∈ X . Since Ω

d+1
R k is locally free on the

punctured spectrum, and is (d + 1)-torsionfree, and moreover red-pdR Ω
d+1
R k < ∞ by [11, Theorem

1.2], so Ω
d+1
R k ∈ X . Since X is closed under extensions, so R∗Ω

d+1
R k ⊆ X . So, red-G-dimR M < ∞

for all M ∈ R∗Ω
d+1
R k by hypothesis on X . Then, R is Gorenstein by Theorem 3.12. So S is Gorenstein.

but S has minimal multiplicity, so S is a hypersurface. Hence, R is a complete intersection. □

We have another consequence of Theorem 3.9 regarding Ulrich modules (see [9],[21]), which extends
and recovers [1, Proposition 2.5((vi) =⇒ (i))].

Corollary 3.15. Let (R,m,k) be a local Cohen–Macaulay ring of minimal multiplicity. Let M be a

maximal Cohen–Macaulay R-module such that red-G-dimR M < ∞. Then, M ∼= N ⊕F for some Ulrich

module N and free R-module F. In particular, if m2 = 0 and M is an R-module such that red-G-dimR M <

∞, then M ∼= k⊕a ⊕F for some integer a ≥ 0 and a free R-module F.

Proof. Taking X = C (R) (the full subcategory of all maximal Cohen–Macaulay modules) in Theorem
3.9, it follows that M ∈ ΩC (R). Hence we can write M ∼= F ⊕N for some N ∈ ΩC (R) such that R is not
a direct summmand of N. Since R has minimal multiplicity, it follows from [21, Proposition 1.6] that
N is an Ulrich module. Finally, if m2 = 0, then R is a Cohen–Macaulay ring of minimal multiplicity,
and every R-module is maximal Cohen–Macaulay. Since R is Artinian, all Ulrich modules are k-vector
spaces (see [9, Proposition (1.2)]). Hence, the claim follows. □
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4. TESTING THE COMPLETE INTERSECTION PROPERTY VIA REDUCING PROJECTIVE DIMENSION

This section is devoted to a proof of the following theorem which contains Theorem1.4 and gives a
partial affirmative answer to Question 1.2.

Theorem 4.1. Let (R,m,k) be a local ring and let 0 ≤ c ≤ 2 be an integer. Then the following are

equivalent:

(i) R is a complete intersection of codimension at most c.

(ii) red-pdR(M)≤ c for each R-module M.

(iii) R is Gorenstein and red-pdR(k)≤ c.

(iv) There exists an integer n ≥ depthR such that red-pdR(TrR Ωn
Rk)≤ c.

For the c = 0 case, the equivalence of (i) through (iii) and also (i) implying (iv) of Theorem 4.1 is
standard. To see (iv) implies (i) for c = 0 case, we notice that the hypothesis implies pdR(TrΩn

Rk)< ∞.
Since n ≥ t := depthR, so Ωn

Rk satisfies (S̃t), so by [17, Proposition 2.4], we get ExtiR(TrΩn
Rk,R) = 0

for all 1 ≤ i ≤ t. Since pdR(TrΩn
Rk) ≤ t by Auslander-Buchsbaum formula, hence TrΩn

Rk is R-free by
[23, Lemma 1(iii), p. 154], thus Ωn

Rk is also free, hence R is regular.
Now we go on to prove the c = 1 and c = 2 case of Theorem 4.1 separately. On both cases, the key

ingredient of the proof is the following theorem; in order not to interrupt the flow of the arguments, we
defer the proof until the end of the paper.

Theorem 4.2. Let R be a local ring and let

0 → M⊕a → K → Ω
n
RM⊕b → 0

be a short exact sequence of R-modules such that cxR(K) = c for some integer c ≥ 0. Then the following

hold:

(i) If a < b, then cxR(M) = cxR(K).

(ii) If a = b, then cxR(M)≤ cxR(K)+1.

(iii) If a > b, then cxR(M) = cxR(K) or cxR(M) = ∞.

The following result has been mentioned in 2.9, and we are now ready to prove it.

Corollary 4.3. Let R be a local ring and let M be an R-module.

(i) If cxR(M)< ∞, then it follows that cxR(M)≤ red-pdR(M).

(ii) If M has reducible complexity (e.g., if CI-dimR(M)< ∞), then cxR(M) = red-pdR(M).

Proof. The claim in part (ii) is an immediate consequence of part (i): we know, if M has reducible
complexity, then it follows that red-pdR(M) ≤ cxR(M); see [3, Theorem 3.6]. Hence it is enough to
prove the claim in part (i).

Set r = red-pdR(M). Note that we may assume r < ∞. We proceed by induction on r. The claim
follows by definition in case r = 0. We shall assume r ≥ 1. Then there is a short exact sequence of
R-modules

(4.3.1) 0 → M⊕a → K → Ω
n
RM⊕b → 0,
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where a,b ≥ 1, n ≥ 0, and red-pdR(K) = r−1. We note that cxR(K)< ∞ because cxR(M)< ∞. By the
induction hypothesis, we have that cxR(K)≤ red-pdR(K) = r−1.

If a≤ b, then cxR(M)≤ cxR(K)+1≤ red-pdR(M) by Theorem 4.2(i)(ii). On the other hand, if a> b,
then since cxM < ∞, we have that cxR(M) = cxR(K)< r = red-pdR(M) by Theorem 4.2(iii). □

Next, we show a general result that a totally reflexive module and its R-dual have the same reducing
projective dimension. This will be used for the proof of Theorem 4.1.

Lemma 4.4. Let R be a local ring and M be a totally reflexive R-module. If there is a short exact
sequence of R-modules

(4.4.1) 0 → M⊕a → K → Ω
n
RM⊕b → 0

such that a,b ≥ 1,n ≥ 0 are integers, then there is a short exact sequence

(4.4.2) 0 → (M∗)⊕b → Ω
n
R(K

∗)⊕F → Ω
n
R(M

∗)⊕a → 0,

with some free R-module F .

Proof. Applying (−)∗ to the sequence (4.4.1), we get a short exact sequence

0 → (Ωn
RM⊕b)∗ → K∗ → (M⊕a)∗ → 0.

Taking n-th syzygies, we obtain a short exact sequence

0 → Ω
n
R((Ω

n
RM)∗)⊕b → Ω

n
R(K

∗)⊕F ′ → Ω
n
R(M

∗)⊕a → 0

for some free R-module F ′. Since M is totally reflexive, one has M∗ ∼= Ωn
R((Ω

n
RM)∗)⊕G for some free

R-module G. Therefore, putting F := F ′⊕G, the above exact sequence gives

0 → (M∗)⊕b → Ω
n
R(K

∗)⊕F → Ω
n
R(M

∗)⊕a → 0.

□

Proposition 4.5. Let R be a local ring and let M be a totally reflexive R-module. Then it follows

red-pdM = red-pdM∗.

Proof. It suffices to prove the inequality red-pdM∗ ≤ red-pdM for any totally reflexive R-module.
Indeed, since M∗ is also a totally reflexive and M ∼=M∗∗, we get the inequality red-pdM = red-pdM∗∗ ≤
red-pdM∗. Consequently, we obtain red-pdM = red-pdM∗.

To prove red-pdM∗ ≤ red-pdM, we assume r := red-pdM < ∞ and proceed by induction on r.
If r = 0 (i.e., pdM < ∞), then M is free and hence so is M∗. This means that red-pdM∗ = 0. Next,

assume r > 0 and choose an exact sequence as (4.4.1) in Lemma 4.4 such that red-pdK = r−1. Since
K is totally reflexive, the induction hypothesis yields red-pdK∗ ≤ red-pdK. Using [11, Proposition
3.8], we get red-pd(Ωn

R(K
∗)⊕F) = red-pdΩn

R(K
∗)≤ red-pdK∗ ≤ red-pdK = r−1. Thus the sequence

(4.4.2) gives us the inequality red-pdM∗ ≤ r. □

Now we proceed with the proof of c = 1 case of Theorem 4.1.



14 OLGUR CELIKBAS, SOUVIK DEY, TOSHINORI KOBAYASHI, AND HIROKI MATSUI

Proof of Theorem 4.1 when c = 1.

4.6. Let R be a complete local ring, M be an R-module, and let i(M) denote the number of non-free
summands in a direct sum decomposition of M by indecomposable modules (such a decomposition
exists and is unique as R is complete, see [22, Corollary 1.10]). Clearly, i(M) = 0 if and only if M is
free. Now assume M is totally reflexive. Then, any direct summand X of M is totally reflexive, and
moreover X is free if and only if X∗ is free, if and only if ΩRX is free. So, we have that i(M)≤ i(ΩRM)

and i(M)≤ i(M∗). Similarly, i(M∗)≤ i(M∗∗) = i(M). So we get i(M∗) = i(M). Now remembering M∗ ∼=
F ⊕ΩR((ΩRM)∗) for some free R-module F , we get i(M)≤ i(ΩRM) = i((ΩRM)∗)≤ i(ΩR((ΩRM)∗)) =

i(M∗) = i(M). Thus, i(M) = i(ΩRM).

4.7. Let R be a local ring and let M be a totally reflexive R-module. Assume there exists a short exact
sequence of R-modules 0 → M⊕a → F → Ωn

RM⊕b → 0, where a,b ≥ 1, n ≥ 0 are integers and F is free.
Then it follows that cxR(M)≤ 1.

Since completion commutes with syzygy and direct sum, completion of totally reflexive modules are
totally reflexive, and complexity does not change under completion, so we may pass to completion and
assume without loss of generality that R is complete. Hence, we can talk about i(−).

Let r = i(M). Since M⊕a ∼= Ω
n+1
R M⊕b ⊕G for some free R-module G, so we get ra = i(M⊕a) =

i(Ωn+1
R M⊕b ⊕G) = i(Ωn+1

R M⊕b) = i(M⊕b) = rb. This yields r = 0 or a = b. If r = 0, then M is a free
R-module and hence cxR(M) = 0 by definition. On the other hand, if a = b, then M⊕a ∼= F ⊕Ω

n+1
R M⊕a,

and this implies ΩRM⊕a ∼= Ω
n+2
R M⊕a. From this isomorphism, we conclude that M has bounded Betti

numbers and hence cxR(M)≤ 1. □

If R is a local ring and M is an R-module, then it is clear by definition that cxR(M) = 0 if and only if
red-pdR(M) = 0. In the following we make a similar observation, connecting modules of bounded Betti
numbers with those having reducing projective dimension 1. For that we first prepare a lemma:

Lemma 4.8. Let M be an R-module such that M⊕a has a periodic resolution for some a ≥ 1. Then M

also has a periodic resolution.

Proof. Since completion commutes with taking syzygies, hence in view of [22, Corollay 1.15(ii)], we
may assume, without loss of generality, that R is complete. Assume there exists an integer n ≥ 1 such
that M⊕a ∼= Ωn

R(M
⊕a). Write Ωn

RM ∼= ⊕r
i=1K⊕bi

i where Ki’s are mutually non-isomorphic indecompos-
able modules. Then we have Ωn

RM⊕a ∼=⊕r
i=1K⊕abi

i . Write M ∼=⊕s
i=1N⊕ci

i where Ni’s are mutually non-
isomorphic indecomposable modules. Then, ⊕s

i=1N⊕aci
i

∼=M⊕a ∼=Ωn
RM⊕a ∼=⊕r

i=1K⊕abi
i and uniqueness

of indecomposable decomposition implies s = r, and after a permutation, we can write Ni ∼= Ki and
aci = abi. Hence, ci = bi and M ∼=⊕r

i=1K⊕bi
i

∼= Ωn
RM. □

Proposition 4.9. Let R be a local ring and let M be an R-module.

(i) If G-dimR(M)< ∞ and red-pdR(M)≤ 1, then ΩnM has a periodic resolution for some n ≥ 0.

(ii) If R is Gorenstein and red-pdR(k)≤ 1, then R is a hypersurface.

(iii) If M has finite complexity and red-pdR(M)≤ 1, then ΩnM has periodic resolution for some n > 0.

(iv) If there exists an integer n ≥ depthR such that red-pdR(TrR Ωn
Rk)≤ 1, then R is a hypersurface.
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Proof. To prove part (i), we assume G-dimR(M) < ∞ and red-pdR(M) ≤ 1. If red-pdR(M) = 0, then
pdR(M) < ∞ in which case there is nothing to prove. Therefore, we can assume red-pdR(M) = 1. Set
d = depth(R) and N = Ωd

RM. Then N is totally reflexive and red-pdR(N) = 1 (red-pdN ̸= 0 since N

has infinite projective dimension). Let 0 → N⊕a → F → Ωn
RN⊕b → 0 be a reducing pd-sequence. It

follows from the argument of 4.7 that a = b, hence we see that N⊕a has periodic resolution and so does
N = ΩdM by Lemma 4.8.

Note, if R is Gorenstein and red-pdR(k)≤ 1, then part (i) implies that cxR(k)≤ 1, i.e., R is a hyper-
surface. Therefore part (ii) holds.

For part (iii), again we may assume red-pdR(M) = 1. Consider a reducing sequence

0 → M⊕a0 → K1 → Ω
n0
R M⊕b0 → 0(4.9.1)

such that K1 has finite projective dimension, a0,b0 are positive integers. Since M has infinite projective
dimension, so cxK1 = 0 < cxM < ∞ implies a0 = b0 by Theorem 4.2(1) and (3). So we have the short
exact sequence 0 → M⊕a0 → K1 → Ω

n0
R M⊕a0 → 0. Since Ωn

RK1 is free for all n ≫ 0, we get Ωn
RM⊕a0 ⊕

F ∼= Ω
n+n0+1
R M⊕a0 and by taking more syzygies, we get Ωn

RM⊕a0 ∼= Ω
n+n0+1
R M⊕a0 ∼= Ω

n0+1
R (Ωn

RM⊕a0)

for all n ≫ 0. Thus, Ωn
RM has periodic resolution by Lemma 4.8.

(iv) The hypothesis along with Theorem3.12 implies that R is Gorenstein. Let d = dimR. There
exists a free module F such that Ω2 TrR Ωn

Rk ⊕ F ∼= (Ωn
Rk)∗. By [11, Corollary 3.13], we have

red-pdR(Ω
2 TrR Ωn

Rk) ≤ 1. By [11, Proposition 3.8], red-pdR(Ω
2 TrR Ωn

Rk⊕F) = red-pdR((Ω
n
Rk)∗) ≤

2. Since R is Gorenstein and n ≥ dimR, (Ωn
Rk)∗ and Ωn

Rk are totally reflexive. Hence we get
red-pdR(Ω

n
Rk) = red-pdR((Ω

n
Rk)∗) ≤ 1 by Proposition 4.5. If red-pdR(Ω

n
Rk) = 0, then by definition

pdR(Ω
n
Rk)< ∞, R is regular. Otherwise red-pdR(Ω

n
Rk) = 1, and then R is a hypersurface by part (i). □

Proof of c = 1 case of Theorem 4.1. Note that (ii) =⇒ (iii) follows from Theorem 3.12 and (iii) =⇒
(i) is due to Proposition 4.9(ii). Since (i) =⇒ (ii) is clear from Corollary 4.3, so this proves (i) ⇐⇒
(ii) ⇐⇒ (iii). Finally, (i) ⇐⇒ (iv) also follows by Proposition 4.9(iv) and Corollary 4.3. □

Proof of Theorem 4.1 when c = 2.

Proposition 4.10. Let R be a local ring and let M be a totally reflexive R-module. Assume red-pdR(M)≤
2. Then it follows that cxR(M)≤ 2 or cxR(M∗)≤ 2.

Proof. By assumption, we have an exact sequence

(4.10.1) 0 → M⊕a → K → Ω
n
RM⊕b → 0,

where a,b ≥ 1, n ≥ 0, and red-pdR(K) ≤ 1. Since K is totally reflexive, we get cxR(K) ≤ 1 by Propo-
sition 4.9. If a ≤ b, then cxR(M) ≤ cxR(K)+1 ≤ 2 by Theorem 4.2(i)(ii). Next we assume a > b. By
Lemma 4.4 and Proposition 4.5 we have an exact sequence

0 → (M∗)⊕b → Ω
n
R(K

∗)⊕F → Ω
n
R(M

∗)⊕a → 0,

where red-pdR K∗ = red-pdR K ≤ 1. Then [11, Proposition 3.8] yields red-pdR(Ω
n
R(K

∗)⊕F)≤ 1. Since
Ωn

R(K
∗)⊕F is totally reflexive, we obtain cxR(Ω

n
R(K

∗)⊕F) ≤ 1 by Proposition 4.9. Thus a > b now
implies cxR(M∗)≤ cxR(Ω

n
R(K

∗)⊕F)≤ 1 by Theorem 4.2(iii). □
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Proposition 4.11. Let (R,m,k) be a local Cohen–Macaulay ring of dimension d. Assume that there

exists a non-zero maximal Cohen–Macaulay module C of finite injective dimension such that one of the

following holds

(1) cxR
(

HomR(Ω
d
Rk,C)

)
< ∞

(2) cxR(C)< ∞ (for e.g., R is Gorenstein) and cxR
(

HomR(Ω
n
Rk,C)

)
< ∞ for some integer n ≥ d.

Then, R is a complete intersection. Moreover, in case (1), it holds that codimR =

cxR(HomR(Ω
d
Rk,C)), and similarly in case (2), it holds that codimR = cxR(HomR(Ω

n
Rk,C)).

Proof. (1) We first prove that R is a complete intersection by induction on d = dimR. If d = 0, then
HomR(k,C) is a non-zero k-vector space. Therefore the hypothesis implies cxR(k)< ∞, and which im-
plies R is a complete intersection. Now assume d > 0. Take an R-regular (and hence C-regular) element
x ∈m\m2. Then (Ωd

Rk)/x(Ωd
Rk)∼= Ωd

R/(x)k⊕Ω
d−1
R/(x)k by [28, Corollary 5.3]. Since Ext>0

R (Ωd
Rk,C) = 0,

we have

HomR(Ω
d
Rk,C)⊗R R/(x)∼= HomR/xR

(
(Ωd

Rk)/x(Ωd
Rk),C/xC

)
∼= HomR/xR

(
Ω

d
R/(x)k,C/xC

)
⊕HomR/xR

(
Ω

d−1
R/(x)k,C/xC

)
by [10, 3.3.3(a)]. Since x is C-regular, it is also HomR(Ω

d
Rk,C)-regular. From this, we have:

cxR/xR

(
HomR/xR

(
Ω

d
R/(x)k,C/xC

)
⊕HomR/xR

(
Ω

d−1
R/(x)k,C/xC

))
= cxR/xR

(
HomR(Ω

d
Rk,C)⊗R R/(x)

)
= cxR

(
HomR(Ω

d
Rk,C)

)
< ∞.

Hence by [7, 4.2.4(3)], we get

max
{
cxR/xR

(
HomR/xR

(
Ω

d
R/(x)k,C/xC

))
,cxR/xR

(
HomR/xR

(
Ω

d−1
R/(x)k,C/xC

))}
< ∞.

In particular, cxR/xR

(
HomR/xR

(
Ω

d−1
R/(x)k,C/xC

))
< ∞. Since C/xC is maximal Cohen–Macaulay

R/(x)-module of finite injective dimension, the induction hypothesis yields that R/xR is a complete
intersection and hence so is R.

Now since we have proved R is a complete intersection, and since Ext>0
R (Ωd

Rk,C) = 0, we get by
[6, Thm. II(1) and 1.5(3)] that cxR(HomR(Ω

d
Rk,C)) = pxR(HomR(Ω

d
Rk,C)) = cxR(Ω

d
Rk)+ pxR(C) ≥

cxR(k). Thus, cxR(HomR(Ω
d
Rk,C)) = cxR(k) = codimR.

(2) The n = d case is already covered by part (1). Now assume there exists an integer n > d such that
cxR(HomR(Ω

n
Rk,C))< ∞. Applying HomR(−,C) to the exact sequence

0 → Ω
n
Rk → R⊕bn−1 → ··· → R⊕bd → Ω

d
Rk → 0

and remembering Ext>0
R (Ωd

Rk,C) = 0, we get an exact sequence

0 → HomR(Ω
d
Rk,C)→C⊕bd → ·· · →C⊕bn−1 → HomR(Ω

n
Rk,C)→ 0.

Since cxR(C)<∞ and cxR(HomR(Ω
n
Rk,C))<∞ by hypothesis, we get cxR(HomR(Ω

d
Rk,C))<∞. There-

fore R is a complete intersection by part (1). Finally, by replacing d by n in the last part of the argument
for (1), it similarly follows that cxR(HomR(Ω

n
Rk,C)) = cxR(k) = codimR. □
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Corollary 4.12. Let (R,m,k) be a local ring. If there exists an integer n ≥ depthR such that

red-pdR(TrR Ωn
Rk)≤ 2, then R is a complete intersection of codimension at most two.

Proof. The hypothesis along with Theorem 3.12 implies that R is Gorenstein. Let d = dimR. There
exists a free module F such that Ω2 TrR Ωn

Rk⊕F ∼= (Ωn
Rk)∗. By [11, Proposition 3.8 and Corollary 3.13],

we have red-pdR((Ω
n
Rk)∗) = red-pdR(Ω

2 TrR Ωn
Rk) = red-pdR(TrR Ωn

Rk)≤ 2. Since R is Gorenstein and
n ≥ dimR, (Ωn

Rk)∗ is totally reflexive, and thus cxR((Ω
n
Rk)∗) ≤ 2 or cxR(Ω

n
Rk) ≤ 2 holds by Proposi-

tion 4.10. Applying Proposition 4.11 (with R = C), we conclude that R is a complete intersection of
codimension less than or equal to 2. □

Corollary 4.13. Let (R,m,k) be a Gorenstein local ring of dimension d. Then, the following are equiv-

alent:

(1) R is a complete intersection of codimension at most two.

(2) For every integer n ≥ 1, red-pdR(Ω
n
Rk)≤ 2.

(3) There exists an integer n ≥ 1 such that red-pdR(Ω
n
Rk)≤ 2.

Proof. (1) =⇒ (2) Follows from Corollary 4.3. (2) =⇒ (3) is obvious. (3) =⇒ (1) Using [11,
Corollary 3.13] we can pass to a higher syzygy to assume that there exists an integer n ≥ d such that
red-pdR(Ω

n
Rk) ≤ 2. Then Ωn

Rk is totally reflexive, and therefore proposition 4.10 shows that either
cx(Ωn

Rk) ≤ 2 or cx((Ωn
Rk)∗) ≤ 2. Then Proposition 4.11 implies that R is a complete intersection of

codimension less than or equal to 2. □

We are now ready to give a proof of c = 2 case of Theorem 4.1:

Proof of c = 2 case of Theorem 4.1. Note that (ii) =⇒ (iii) follows from Theorem 3.12 and (iii) =⇒ (i)
is due to Corollary 4.13. Since (i) =⇒ (ii) is clear from Corollary 4.3, this proves (i) ⇐⇒ (ii) ⇐⇒ (iii).
Finally, (iv) ⇐⇒ (i) follows by Corollaries 4.3 and 4.12. □

Now we finally give a proof of Theorem 4.2. We start with an argument on sequences of positive real
numbers.

4.14. Let c ≥ 0 be an integer. We say that a sequence {an}∞
n=0 of real numbers has polynomial growth of

degree c−1 if it is eventually non-negative and there is a real number A > 0 such that an ≤ Anc−1 for all
n ≫ 0. Note that if {an}n=0 has polynomial growth of degree c−1, then lim

n→∞
an/nc = 0. For example,

for an R-module M, cx(M)≤ c if and only if the Betti sequence {β R
n (M)}∞

n=0 has polynomial growth of
degree c−1. The following lemma is elementary.

Lemma 4.15. Let c ≥ 0 be an integer, f (t) ∈ R[t] be a polynomial of degree c− 1 with a positive
leading term and let u be a real number such that 0 < u ≤ 1. We consider the sequence {an}∞

n=0 given
by an = ∑

n
l=0 un−l f (l). Then {an}∞

n=0 has polynomial growth of degree c. Furthermore, if u < 1, then
{an}∞

n=0 has polynomial growth of degree c−1.

Proof. The case of u = 1 is easy. We shall assume u < 1 and proceed by induction on c to show {an}∞
n=0

has polynomial growth of degree c−1. If c = 0, there is nothing to prove. Consider the case of c ≥ 1.
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Then

an −uan =
n

∑
l=0

un−l f (l)−u
n

∑
l=0

un−l f (l) =−un+1 f (0)−
n−1

∑
l=0

un−i( f (l +1)− f (l))+ f (n)

and hence

(4.15.1) an =
1

1−u

{
−un+1 f (0)−

n−1

∑
l=0

un−i( f (l +1)− f (l))+ f (n)

}
.

Because f (t + 1)− f (t) is a polynomial with a positive reading term, the induction hypothesis shows
that {∑

n−1
l=0 un−i( f (l + 1)− f (l))}∞

n=0 has polynomial growth of degree c− 2. Thus, (4.15.1) shows

an ≤ 1
1−u

( f (n)+ 1) for all n ≫ 0. Moreover, lim
n→∞

an/nc−1 = lim
n→∞

f (n)/(1− u)nc−1 > 0 yields that

{an}∞
n=0 is eventually non-negative. Therefore, we are done. □

Now, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Since βi(K)≤ aβi+n(M)+bβi(M), cxR(K)≤ cxR(M). Take a real number A > 0
such that βi(K)≤ Aic−1 for all i ≥ 1. Set u := a/b.

First, consider the case of a ≤ b i.e., u ≤ 1. From the short exact sequence, there are inequalities

bβi+n+1(M)≤ βi+1(K)+aβi(M)≤ A(i+1)c−1 +aβi(M)

and hence we get

(4.2.1) βi+n+1(M)≤ A
b
(i+1)c−1 +uβi(M)

for all i ≥ 1.

Claim 1. For integers r, i ≥ 1, we have an inequality

βi+r(n+1)(M)≤ A
b

r−1

∑
l=0

ur−l−1(i+ l(n+1)+1)c−1 +ur
βi(M).

Proof of Claim 1. We use the induction on r. The case of r = 1 is nothing but the inequality (4.2.1).
Assume r ≥ 2 and the inequality

βi+(r−1)(n+1)(M)≤ A
b

r−2

∑
l=0

ur−l−2(i+ l(n+1)+1)c−1 +ur−1
βi(M)

holds true. Then we use the inequality (4.2.1) again, we obtain

βi+r(n+1)(M)≤ A
b
(i+ r(n+1)−n)c−1 +uβi+(r−1)(n+1)(M)

=
A
b
(i+(r−1)(n+1)+1)c−1 +uβi+(r−1)(n+1)(M)

≤ A
b
(i+(r−1)(n+1)+1)c−1 +u

{
A
b

r−1

∑
l=0

ur−l−2(i+ l(n+1)+1)c−1 +ur−1
βi(M)

}

=
A
b

r−1

∑
l=0

ur−l−1(i+ l(n+1)+1)c−1 +ur
βi(M),

where the second inequality uses the induction hypothesis. □
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Set B := max{βi(M) | i = 1,2, . . . ,n+ 1}. For an integer m ≥ 2(n+ 1), write m = r(n+ 1)+ i for
some i ∈ {1,2, . . . ,n+1} and r ≥ 1. Then one has

βm(M)≤ A
b

r−1

∑
l=0

ur−l−1(i+ l(n+1)+1)c−1 +ur
βi(M)≤ A

b

r−1

∑
l=0

ur−l−1(i+ l(n+1)+1)c−1 +B.

Applying Lemma 4.15 to the first term, we conclude the statements (1) and (2).
Assume that a > b i.e., u > 1. From the short exact sequence, there are inequalities

aβi(M)≤ βi(K)+bβi+n+1(M)≤ Aic−1 +bβi+n+1(M)

and hence we get

(4.2.2) βi+n+1(M)≥ uβi(M)− A
b

ic−1

for all i ≥ 1.

Claim 2. For any integers r, i ≥ 1, we have an inequality

βi+r(n+1)(M)≥ ur

{
βi(M)− A

b
ic−1

r−1

∑
l=0

u−l−1
(

1+
l(n+1)

i

)c−1
}
.

Proof of Claim 2. As in the proof of Claim 1, we use the induction on r. The inequality holds if r = 1
by (4.2.2). Consider the case of r ≥ 2 and assume

βi+(r−1)(n+1)(M)≥ ur−1

{
βi(M)− A

b
ic−1

r−2

∑
l=0

u−l−1
(

1+
l(n+1)

i

)c−1
}
.

Then using (4.2.2), we obtain

βi+r(n+1)(M)≥ uβi+(r−1)(n+1)(M)− A
b
(i+(r−1)(n+1))c−1

≥ u

[
ur−1

{
βi(M)− A

b
ic−1

r−2

∑
l=0

u−l−1
(

1+
l(n+1)

i

)c−1
}]

− A
b
(i+(r−1)(n+1))c−1

≥ ur

{
βi(M)− A

b
ic−1

r−1

∑
l=0

u−l−1
(

1+
l(n+1)

i

)c−1
}
,

where the second inequality follows from the induction hypothesis. □

We note that for any integers r, i ≥ 1 the following inequalities hold:
r−1

∑
l=0

u−l−1
(

1+
l(n+1)

i

)c−1

≤
r−1

∑
l=0

u−l−1 (1+ l(n+1))c−1 ≤
∞

∑
l=0

u−l−1 (1+ l(n+1))c−1 ,

where the last sum C := ∑
∞
l=0 u−l−1 (1+ l(n+1))c−1 is finite as u > 1. Then we get inequalities

βi+r(n+1)(M)≥ ur

{
βi(M)− A

b
ic−1

r−1

∑
l=0

u−l−1
(

1+
l(n+1)

i

)c−1
}

≥ ur
{

βi(M)− AC
b

ic−1
}(4.2.3)

by Claim 2 for any integers r, i ≥ 1.
Now, we assume cxR(M) ̸= cxR(K). As c = cxR(K) ≤ cxR(M), so then cxR(M) > c and we now

prove cxR(M) = ∞. Then there is a sufficiently large integer k such that βk(M)> C
b kc−1+1. Combining
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this inequality with (4.2.3), we conclude that there is an integer k such that βk+r(n+1)(M) ≥ ur for any
integer r ≥ 1. This means that cxR(M) = ∞. □

Remark 4.16. Let R be a local ring and let M and N be R-modules. If fR(M,N) := inf{ j ≥ 0 |
lR(ExtiR(M,N))< ∞ for all i ≥ j}< ∞, then one can define

β
i
R(M,N) = lR(ExtiR(M,N)) for all i ≥ fR(M,N)

and

cxR(M,N) = inf{c ≥ 0 | ∃r > 0 s.t. β
i
R(M,N)≤ ric−1 (∀i ≥ fR(M,N))}

Note, If N = k, then fR(M,k) = 0, β i
R(M,k) = β i

R(M) is the Betti number of M, and cxR(M,k) = cxR(M)

is the complexity of M.
An argument verbatim to that of the proof of Theorem 4.2 also establishes the following result:
Let

0 → M⊕a → K → Ω
n
RM⊕b → 0

be a short exact sequence, X an R-module such that f := fR(M,X)< ∞ and cxR(K,X) = c < ∞.

(1) If a < b, then cxR(M,X) = cxR(K,X).
(2) If a = b, then cxR(M,X)≤ cxR(K,X)+1.
(3) If a > b, then either cxR(M,X) = cxR(K,X) or cxR(M,X) = ∞.

Applying this to X =R and M locally free on punctured spectrum, one sees that cxR(M,R)= gcxR(M)

is exactly the Gorenstein complexity, as in the notation of [3, Definition 4.1]. In this case, the above
inequalities give relations between Gorenstein complexities of modules that fit into a short exact se-
quences, and the Gorenstein complexity and red-G-dim version of Corollary 4.3 holds (see [3, Proposi-
tion 4.3]).

ACKNOWLEDGEMENTS

The authors thank Jesse Cook for his comments, suggestions, and help during the preparation of this
manuscript. The authors also thank Tokuji Araya for his help and discussions on earlier versions of this
manuscript.

REFERENCES

[1] T. Araya and O. Celikbas, Reducing invariants and total reflexivity, Illinois J. Math. 64 (2020), no. 2, 169–184.
[2] T. Araya, O. Celikbas, J. Cook, and T. Kobayashi, On modules with finite reducing Gorenstein dimension, preprint, 2021,

posted at arXiv:2103.00253.
[3] T. Araya and R. Takahashi, On reducing homological dimensions over noetherian rings. Proc. Amer. Math. Soc. 150 (2022),

469–480.
[4] M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American

Mathematical Society, Providence, R.I., 1969.
[5] L. L. Avramov, V. N. Gasharov, and I. V. Peeva, Complete intersection dimension, IHÉS Mathematics Publications, 86 (1997),

p. 67–114.
[6] L. L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete intersections, Invent. math. 142,

285–318 (2000).
[7] L. L. Avramov, Infinite free resolutions, Six lectures on commutative algebra, 1–118, Mod. Birkhäuser Class., Birkhäuser

Verlag, Basel, 2010.
[8] P. A. Bergh, Modules with reducible complexity, J. Algebra 310:1 (2007), 132–147.



SOME CHARACTERIZATIONS OF LOCAL RINGS VIA REDUCING DIMENSIONS 21

[9] J. P. Brennan, J. Herzog, and B. Ulrich, Maximally generated Cohen–Macaulay modules, Math. Scand. 61 (1987), no. 2,
181–203.

[10] W. Bruns and J. Herzog, Cohen–Macaulay rings, revised edition, Cambridge Studies in Advanced Mathematics, 39, Cam-
bridge University Press, Cambridge, 1998.

[11] O. Celikbas, S. Dey, T. Kobayashi, and H. Matsui, On the reducing projective dimension over local rings, Glasg. Math. J.
66(2024), no.1, 104–118. doi:10.1017/S0017089523000368.

[12] L.W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000.
[13] L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein Projective, Injective and Flat Dimensions - A Functorial

Description with Applications, Journal of Algebra, Volume 302, Issue 1, 1 August 2006, Pages 231–279.
[14] H. Dao, M. Eghbali, and J. Lyle, Hom and Ext, revisited, J. Algebra 571 (2021), 75–93.
[15] H. Dao and R. Takahashi, Classification of resolving subcategories and grade consistent functions, Int. Math. Res. Not.

2015(1), 119–149.
[16] S. Dey and R. Takahashi; On the Subcategories of n-Torsionfree Modules and Related Modules, appeared online, Collect.

Math. (2021). https://doi.org/10.1007/s13348-021-00338-1.
[17] D. T. Dibaei and A. Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra 219 (2014), 4458–4478.
[18] S. Goto, N. Matsuoka, T. T. Phuong, Almost Gorenstein rings, J. of Algebra, Volume 379, 1 April 2013, Pages 355–381.
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