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Abstract. This paper studies the relationship between Serre’s condition (Rn) and
Auslander–Buchweitz’s maximal Cohen–Macaulay approximations. It is proved that
a Gorenstein local ring satisfies (Rn) if and only if every maximal Cohen–Macaulay
module is a direct summand of a maximal Cohen–Macaulay approximation of a (Cohen–
Macaulay) module of codimension n+ 1.

1. Introduction

In the 1980s, Auslander and Buchweitz [2] introduced the notion of a maximal Cohen–
Macaulay approximation of a finitely generated module over a Cohen–Macaulay local ring
with a canonical module, which has been playing a fundamental role in the representation
theory of Cohen–Macaulay rings. Several years ago Kato [6] gave the following character-
ization theorem of Gorenstein local rings by maximal Cohen–Macaulay approximations.
We abbreviate Cohen–Macaulay to CM and maximal Cohen–Macaulay to MCM.

Theorem 1.1 (Kato). Let R be a d-dimensional Gorenstein local ring.

(1) The following are equivalent for d ≥ 1.
(a) R is a domain.
(b) Every MCM R-module is a MCM approximation of a (CM) R-module of codimen-

sion 1.
(2) The following are equivalent for d ≥ 2.

(a) R is a unique factorization domain.
(b) Every MCM R-module is a MCM approximation of a (CM) R-module of codimen-

sion 2.

It is natural to ask what happens if in the statements (b) of the above theorem we
weaken the condition of being a MCM approximation to that of being a direct summand
of a MCM approximation. The main purpose of this paper is to answer this question in
more general settings. Our main results yield the following theorem.

Theorem 1.2. Let R be a d-dimensional Gorenstein local ring. The following are equiv-
alent for each 0 ≤ c ≤ d.
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(1) R satisfies Serre’s condition (Rc−1).
(2) Every MCM R-module is a direct summand of a c-th syzygy of a (CM) R-module of

codimension c.
(3) Every MCM R-module is a direct summand of a MCM approximation of a (CM)

R-module of codimension c.

Letting c = 1, 2 in the above theorem, we obtain the following result which is analogous
to Kato’s theorem. This gives the answer to the question raised above.

Corollary 1.3. Let R be a d-dimensional Gorenstein local ring.

(1) The following are equivalent for d ≥ 1.
(a) R is reduced.
(b) Every MCM R-module is a direct summand of a MCM approximation of a (CM)

R-module of codimension 1.
(2) The following are equivalent for d ≥ 2.

(a) R is normal.
(b) Every MCM R-module is a direct summand of a MCM approximation of a (CM)

R-module of codimension 2.

This paper is organized as follows. In Section 2, we consider over a CM local ring the
condition that all MCM modules are direct summands of syzygies of certain modules. In
Section 3, we study over a Gorenstein local ring the condition that all MCM modules are
direct summands of MCM approximations of certain modules. The proof of Theorem 1.2
is given at the end of this section.

2. MCM modules that are direct summands of syzygies

Throughout this paper, let R be a commutative Cohen–Macaulay local ring of Krull
dimension d. All R-modules are assumed to be finitely generated.

Let us begin with recalling some basic definitions.

Definition 2.1. (1) For an integer n ≥ 0 we denote by ΩnM an n-th syzygy of M , that
is, the image of the n-th differential map in a free resolution of M .
(2) For an integer n ≥ −1 we say that R satisfies Serre’s condition (Rn) if the local ring
Rp is regular for all prime ideals p of R with ht p ≤ n.
(3) The singular locus SingR of R is by definition the set of prime ideals p of R such that
the local ring Rp is nonregular.
(4) Let M be an R-module. The nonfree locus NF(M) (respectively, the infinite projective
dimension locus IPD(M)) of M is defined as the set of prime ideals p of R such that the
Rp-module Mp is nonfree (respectively, is of infinite projective dimension).
(5) Let V be a closed subset of SpecR. Then we set codimV = d − dimV and call this
the codimension of V . The codimension codimM of an R-module M is defined as the
codimension of SuppM , whence codimM = d− dimM .

Remark 2.2. (1) If X, Y are n-th syzygies of an R-module M , then X ⊕F ∼= Y ⊕G for
some free R-modules F,G.
(2) By definition R always satisfies (R−1).
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(3) It is well-known and easy to see that the nonfree locus and the infinite projective
dimension locus of anR-module are always closed subsets of SpecR in the Zariski topology.
(4) If M is a MCM R-module, then NF(M) is contained in SingR.

In the following proposition we study how to represent each MCM module as a direct
summand of a syzygy of a certain CM module. This result will become a basis of our
main results.

Proposition 2.3. LetM be a MCM R-module. Then for each integer 0 ≤ c ≤ codimNF(M)
there exists a CM R-module N such that

(1) codimN = c,
(2) IPD(N) = NF(M) and
(3) M is isomorphic to a direct summand of a c-th syzygy of N .

Proof. By virtue of [5, Remark 5.2(1)], there exists an ideal I of R with NF(M) = V(I)
such that I · ExtiR(M,X) = 0 for all integers i > 0 and all R-modules X. As

dimNF(M) = dimR/I = d− ht I,

we have ht I = codimNF(M) ≥ c, and can take an R-sequence x = x1, . . . , xc in I. Setting
N = M/xM , we see from [7, Proposition 2.2] that M is isomorphic to a direct summand
of ΩcN . The condition (3) is thus satisfied, and it is observed that N is a CM R-module
with codimN = d− dimN = c.

Now it remains to verify that N satisfies the condition (2). Fix a prime ideal p in the
union IPD(N)∪NF(M). Then it is easily observed that p contains the sequence x. Hence
by [3, Exercise 1.3.6] the equalities

pdRp
Np = pdRp

Mp/xMp = pdRp
Mp + c

hold. This shows that the Rp-module Np has infinite projective dimension if and only if
so does Mp. Since M is a MCM R-module, the Auslander–Buchsbaum formula implies
IPD(M) = NF(M). Therefore we obtain IPD(N) = NF(M). !

As an immediate consequence of the above proposition, the following holds.

Corollary 2.4. Let M be a MCM R-module whose nonfree locus has dimension n. Then
there exists a CM R-module N of dimension n such that M is isomorphic to a direct
summand of Ωd−nN .

Proof. We have codimNF(M) = d− n. Apply Proposition 2.3 to c := d− n. !
Applying the above corollary to n = 0, we obtain the following result, which recovers

[7, Corollary 2.6].

Corollary 2.5. Let M be a MCM R-module which is locally free on the punctured spec-
trum of R. Then there exists an R-module N of finite length such that M is isomorphic
to a direct summand of ΩdN .

Next we establish a criterion for R to satisfy Serre’s condition (Rn) in terms of the
codimensions of the nonfree loci of MCM R-modules.

Proposition 2.6. The following are equivalent for each 0 ≤ c ≤ d.
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(1) The ring R satisfies (Rc−1).
(2) One has codim SingR ≥ c.
(3) One has codimNF(M) ≥ c for all MCM R-modules M .

Proof. (1) ⇒ (2): Let p be a prime ideal in SingR. As R satisfies (Rc−1), the height of p
is at least c, whence dimR/p ≤ d − c. Therefore dim SingR ≤ d − c, which means that
SingR has codimension at least c.

(2) ⇒ (3): Since NF(M) is contained in SingR, we have dimNF(M) ≤ dim SingR.
Hence the (in)equalities

codimNF(M) = d− dimNF(M) ≥ d− dim SingR = codim SingR ≥ c

follow.
(3)⇒ (1): Let p be a prime ideal of R with ht p ≤ c−1. LetM be a d-th syzygy of the R-

module R/p. ThenM is a MCM R-module, and by assumption we have codimNF(M) ≥ c,
or equivalently,

dimNF(M) ≤ d− c.

Suppose that Rp is not regular. Then the Rp-module Mp is not free, for it is a d-th syzygy
of the Rp-module κ(p). Hence p belongs to NF(M), and there are inequalities

dimNF(M) ≥ dimR/p ≥ d− c+ 1.

This contradiction shows that Rp is regular. !

Let us now state and prove the main result of this section, which characterizes CM
local rings satisfying Serre’s (Rn)-condition.

Theorem 2.7. For every integer 0 ≤ c ≤ d the following are equivalent.

(1) The ring R satisfies (Rc−1).
(2) Every MCM R-module is isomorphic to a direct summand of a c-th syzygy of a CM

R-module of codimension c.
(3) Every MCM R-module is isomorphic to a direct summand of some syzygy of an R-

module of codimension at least c.

Proof. Propositions 2.3 and 2.6 show that (1) implies (2), and it is obvious that (2) implies
(3). Assume that (3) holds, and take any MCM R-module M . By assumption, there are
an R-module N with codimN ≥ c and an integer b ≥ 0 such that M is isomorphic to
a direct summand of ΩbN . Then we have inclusions NF(M) ⊆ NF(ΩbN) ⊆ SuppN of
closed subsets of SpecR, which implies

dimNF(M) ≤ dimNF(ΩbN) ≤ dim SuppN = dimN ≤ d− c.

Hence NF(M) has codimension at least c, and it is deduced from Proposition 2.6 that R
satisfies (Rc−1). !

3. MCM modules that are direct summands of MCM approximations

Throughout this section, our ring R is further assumed to be Gorenstein. The following
is a celebrated result due to Auslander and Buchweitz [2, Theorem 1.8].
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Theorem 3.1 (Auslander–Buchweitz). For each R-module M there exists an exact se-
quence

(3.1.1) 0 → Y → X → M → 0

of R-modules such that X is MCM and Y has finite projective dimension.

Definition 3.2. A MCM R-module X admitting an exact sequence of the form (3.1.1)
is called a MCM approximation of M .

For an R-module M we denote by TrM the (Auslander) transpose of M , that is, the
cokernel of the R-dual of the first differential map in a free resolution of M . We denote by
MCM(R) the stable category of MCM R-modules. This is defined as follows: the objects
of MCM(R) are precisely the MCM R-modules, and the hom-set HomMCM(R)(M,N) of
objectsM,N inMCM(R) is the quotient of HomR(M,N) by the R-submodule consisting of
homomorphisms factoring through free R-modules. Since R is assumed to be Gorenstein,
MCM(R) is a triangulated category, and taking a syzygy and a transpose defines an
autoequivalence and a duality of MCM(R), respectively.

Ω :MCM(R)
∼=−→ MCM(R),

Tr :MCM(R)
∼=−→ MCM(R)op.

For details, we refer the reader to [1] and [4].
One can describe a MCM approximation by using syzygies and transposes:

Lemma 3.3. For any R-module M , the R-module

TrΩnTrΩnM

is a MCM approximation of M for all n ≥ d− depthM .

Proof. Note that ΩnM is a MCM R-module. Since both Ω and Tr preserve the MCM
property, the R-module X = TrΩnTr(ΩnM) is also a MCM module. It follows from [1,
Proposition (2.21) and Corollary (4.22)] that there exists an exact sequence

(3.3.1) 0 → K → X → M → 0

of R-modules such that K has projective dimension at most n− 1. Consequently, X is a
MCM approximation of M . !

A MCM approximation version of Corollary 2.4 also holds true:

Proposition 3.4. (1) Let M be a MCM R-module with n-dimensional nonfree locus.
Then there exists an n-dimensional CM R-module N such that M is isomorphic to a
direct summand of a MCM approximation of N .

(2) Let M be a MCM R-module that is locally free on the punctured spectrum of R. Then
there exists an R-module N of finite length such that M is isomorphic to a direct
summand of a MCM approximation of N .

Proof. (1) It is easy to see that NF(Ωd−nM) coincides with NF(M). Applying Corollary
2.4 to the MCM module Ωd−nM , we find a CM module N of dimension n such that
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Ωd−nM is isomorphic to a direct summand of Ωd−nN . Taking TrΩd−nTr yields that M is
isomorphic to a direct summand of

X := TrΩd−nTrΩd−nN ⊕ F

for some free R-module F . Using Lemma 3.3, we easily see that X is a MCM approxi-
mation of N .

(2) The assertion follows from applying (1) to n = 0. !

The main result of this section is the following characterization of Gorenstein local rings
satisfying Serre’s condition (Rn). This result can be viewed as a MCM approximation
version of Theorem 2.7.

Theorem 3.5. The following are equivalent for each 0 ≤ c ≤ d.

(1) R satisfies (Rc−1).
(2) Every MCM R-module is isomorphic to a direct summand of a MCM approximation

of a CM R-module of codimension c.
(3) Every MCM R-module is isomorphic to a direct summand of a MCM approximation

of an R-module of codimension at least c.

Proof. (1) ⇒ (2): Let M be a MCM R-module. Using Theorem 2.7 for the MCM R-
module ΩcM , we get a CM R-module N of codimension c such that ΩcM is isomorphic to
a direct summand of ΩcN . Then applying TrΩcTr to this relation shows that TrΩcTrΩcM
is isomorphic to a direct summand of X := TrΩcTrΩcN up to free summands. By Lemma
3.3 the module X is a MCM approximation of N . Since we have a duality

TrΩc : MCM(R)
∼=−→ MCM(R),

the R-module TrΩcTrΩcM is isomorphic to M up to free summands. Therefore M is
isomorphic to a direct summand of X ⊕ F for some free R-module F . It is easy to see
that X ⊕ F is also a MCM approximation of N .

(2) ⇒ (3): This implication is obvious.
(3) ⇒ (1): Let M be a MCM R-module. Then N := TrΩdTrM is also a MCM R-

module. Applying the condition (3) to N , we observe that there exists an R-module L
of codimension at least c such that N is isomorphic to a direct summand of a MCM
approximation X of L. It follows from [2, Theorem B] and Lemma 3.3 that the R-module
X is isomorphic to TrΩdTrΩdL up to free summands. The functor

TrΩdTr : MCM(R)
∼=−→ MCM(R)

is an equivalence, so we see that M is isomorphic to a direct summand of ΩdL up to free
summands. Thus Theorem 2.7 implies that R satisfies Serre’s condition (Rc−1). !

Proof of Theorem 1.2. The assertion follows by combining Theorems 2.7 and 3.5. !
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