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Abstract. Let R be a commutative noetherian ring. In this paper, we study specialization-closed subsets of SpecR. More
precisely, we first characterize the specialization-closed subsets in terms of various closure properties of subcategories of
modules. Then, for each nonnegative integer n we introduce the notion of n-wide subcategories of R-modules to consider
the question asking when a given specialization-closed subset has cohomological dimension at most n.

1. Introduction

Local cohomology has been introduced by Grothendieck and has been a fundamental tool in commutative algebra and
algebraic geometry. The most important problem concerning local cohomology is to clarify when it vanishes. In the late
1960s, to explore this problem, Hartshorne [15] has defined the cohomological dimension cd I of an ideal I of a commutative
ring R as the highest index of the non-vanishing local cohomologies supported on I. This numerical invariant has been
studied widely and deeply so far. Among other things, the celebrated Hartshorne–Lichtenbaum vanishing theorem [15]
gives an equivalent condition for I to have cd I ! dimR−1. Ogus [26], Peskine and Szpiro [27], and Huneke and Lyubeznik
[17] give characterizations of the ideals I with cd I ! dimR − 2. Recently, Varbaro [31] and Dao and Takagi [8] have
studied the ideals I with cd I ! dimR − 3. The cohomological dimension cd I of an ideal I is naturally extended to the
cohomological dimesion cdΦ of a specialization-closed subset Φ of SpecR, that is, the cohomological dimension of an ideal
coincides with the cohomological dimension of the Zariski-closed subset defined by the ideal.

A Serre subcategory of an abelian category is by definition a full subcategory closed under extensions, subobjects and
quotient objects. A localizing subcategory is defined to be a Serre subcategory closed under coproducts. These notions
were first studied deeply by Gabriel [10]. It was proved that for a commutative noetherian ring R a subset Φ of SpecR is
specialization-closed if and only if Supp−1 Φ is localizing, if and only if Supp−1

fg Φ is Serre (see Notation 2.4). Since then,
localizing subcategories have been investigated by many authors to develop geometric studies of abelian categories; see
[11, 12, 13, 16, 18, 30]. A wide subcategory of an abelian category is defined as a full subcategory closed under extensions,
kernels and cokernels. In recent years, wide subcategories have actively been investigated in representation theory of
algebras; see [3, 5, 22, 29, 32].

In this paper, we first characterize the specialization-closed subsets in terms of various closure properties of subcategories
of modules, which complements the above mentioned theorem due to Gabriel; see Theorem 2.6. Next, we introduce the
notion of an n-wide subcategory for each nonnegative integer n. An n-wide subcategory turns out to be nothing but a wide
(resp. localizing) subcategory for n = 1 (resp. n = 0). We explore the cohomological dimension of a specialization-closed
subset by relating it to the n-wide property of a certain corresponding full subcategory of modules.

Theorem 1.1 (Theorems 4.3, 4.9, 4.12 and 4.13). Let R be a commutative noetherian ring. Let n " 0 be an integer.

(1) Let Φ be a specialization-closed subset of SpecR. Then the implication

cdΦ ! n =⇒ supp−1(Φ∁) is n-wide

holds true. The converse holds true as well in each of the following cases.
(a) n ! 1 or n " dimR− 1.
(b) (R,m, k) is complete regular local with k separably closed, Φ is closed with Φ \ {m} connected, and n = dimR− 2.
(c) R has positive prime characteristic, and Φ is closed with a perfect defining ideal.
(d) R = S[∆] is a semigroup ring, and Φ is closed with a perfect defining ideal generated by elements of ∆.
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(2) The following are equivalent.
(a) cdΦ ! n for all specialization-closed subsets Φ of SpecR.

(b) supp−1(Φ∁) is n-wide for all specialization-closed subsets Φ of SpecR.

(c) supp−1((MaxR)∁) is n-wide.
(d) dimR ! n.

Here, for a subset Φ of SpecR we denote by Φ∁ the complement of Φ in SpecR, and by MaxR the set of maximal
ideals of R. Also, supp stands for the small support introduced by Foxby [9]. Theorem 1.1 includes the recent theorem of
Angeleri Hügel, Marks, Šťov́ıček, Takahashi and Vitória [2], which asserts Theorem 1.1(1a) for n = 1. It turns out that,
whenever 2 ! n ! dimR − 2, the converse of the implication displayed in Theorem 1.1(1) does not necessarily hold; see
Example 4.16. The proofs of (1a) and (2) of Theorem 1.1 use balanced big Cohen–Macaulay modules, whose existence
has been shown recently by André [1].

The organization of this paper is as follows. In Section 2, we state several basic properties of supports, small supports
and associated primes to interpret them in terms of closure properties of subcategories of modules. Section 3 gives
preliminaries for the next section. We introduce the torsion, local cohomology and transform functors with respect to a
specialization-closed subset and its cohomological dimension, and investigate their fundamental properties. The key role is
played by the corresponding localization sequence in the derived category. In Section 4, we define an n-wide subcategory
of modules for each nonnegative integer n. After verifying several basic properties of them, we consider the n-wideness of
the subcategory of modules corresponding to a specialization-closed subset, and prove Theorem 1.1.

2. A characterization of the specialization-closed subsets

We begin with our convention.

Convention 2.1. Throughout this paper, we assume that all rings are commutative and noetherian and all subcategories
are full. We set N = Z"0 = {0, 1, 2, . . . }. Let R be a ring. We denote by ModR the category of R-modules, by modR the
category of finitely generated R-modules, and by D(ModR) the (unbounded) derived category of ModR. Note that there
are inclusions modR ⊆ ModR ⊆ D(ModR). We use well-known facts on local cohomology basically tacitly; we refer the
reader to [4]. We omit subscripts and superscripts as long as there is no danger of confusion.

We recall the definitions of the support and the small supports of a complex of modules.

Definition 2.2. [9] For X ∈ D(ModR) we define the support of X by SuppX = {p ∈ SpecR | Xp ∕∼= 0}, and the small
support of X by suppX = {p ∈ SpecR | X ⊗L

R κ(p) ∕∼= 0}, where κ(p) = Rp/pRp.

We denote by ER(M) the injective hull of an R-module M . Let X be a complex of R-modules with H≪0(X) = 0. Then
one can take a minimal injective resolution

ER(X) = (0 → · · · ∂i−1

−−−→ Ei
R(X)

∂i

−→ Ei+1
R (X)

∂i+1

−−−→ · · · )

of X, that is, a bounded below complex of injective R-modules quasi-isomorphic to X such that Ei
R(X) is the injective

hull of Ker ∂i for all i. Recall that the ith Bass number µi(p,M) of an R-module M with respect to a prime ideal p of
R is defined as the dimension of ExtiRp

(κ(p),Mp) as a κ(p)-vector space. Then µi(p,M) is equal to the cardinality of the

number of direct summands ER(R/p) of Ei
R(M); see [23, Theorem 18.7]. Thus, there is a direct sum decomposition into

indecomposable injective modules Ei
R(M) ∼=

!
p∈SpecR ER(R/p)⊕µi(p,M).

For a subset Φ of SpecR, let cl(Φ) be the set of prime ideals p of R such that q ⊆ p for some q ∈ Φ. This is called the
specialization closure, since it is the smallest specialization-closed subset of SpecR containing Φ. We state fundamental
properties of supports, small supports and associated primes.

Proposition 2.3. (1) For any X ∈ D(ModR) one has suppX ⊆ cl(suppX) ⊆ SuppX.
(2) Let X ∈ D(ModR). Let I be a complex of injective R-modules quasi-isomorphic to X. Then suppX ⊆

"
i∈Z Ass Ii.

The equality holds if H≪0(X) = 0 and I = E(X). In particular, for each R-module M there is an inclusion AssM ⊆
suppM , whose equality holds if M is injective.

(3) For every M ∈ ModR it holds that cl(AssM) = cl(suppM) = SuppM . If M ∈ modR, then suppM = SuppM .
(4) Let X → Y → Z → X[1] be an exact triangle in D(ModR). Then one has suppY ⊆ suppX ∪ suppZ.
(5) For a family {Xλ}λ∈Λ in D(ModR) one has supp(

!
λ∈Λ Xλ) =

"
λ∈Λ suppXλ.

(6) Let 0 → L → M → N → 0 be an exact sequence in ModR. Then there are an equality SuppM = SuppL ∪ SuppN ,
and inclusions AssL ⊆ AssM and AssM ⊆ AssL ∪AssN .
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(7) For a family {Mλ}λ∈Λ in ModR one has Supp(
!

λ∈Λ Mλ) =
"

λ∈Λ SuppMλ and Ass(
!

λ∈Λ Mλ) =
"

λ∈Λ AssMλ.

Proof. The first inclusion in (1) is clear, while the second follows from the fact that SuppX is specialization-closed and
contains suppX. Assertion (2) follows from [6, Proposition 2.1 and Remark 2.2]. The equality and the first inclusion in
(6) are obvious, while the second inclusion is shown in [23, Theorem 6.3]. Assertions (4) and (5) are straightforward.

Let us show (3). Let M ∈ ModR. By (1) and (2) we have cl(AssM) ⊆ cl(suppM) ⊆ SuppM . For each p ∈ SuppM
the set AssMp is nonempty, and we find q ∈ AssM such that q ⊆ p; see [23, Theorem 6.2]. Hence p belongs to cl(AssM).
If M is finitely generated, then it is observed from [7, Corollary A.4.16] that suppM = SuppM .

Now we show (7). For each µ ∈ Λ the inclusion Mµ ⊆
!

λ∈Λ Mλ shows AssMµ ⊆ Ass(
!

λ∈Λ Mλ), which implies"
µ∈Λ AssMµ ⊆ Ass(

!
λ∈Λ Mλ). Let p ∈ Ass(

!
λ∈Λ Mλ). Then there is a monomorphismR/p ↩→

!
λ∈Λ Mλ, which factors

through a submodule
!n

i=1 Mλi
of

!
λ∈Λ Mλ for some finitely many indices λ1, . . . ,λn ∈ Λ. Hence p ∈ Ass(

!n
i=1 Mλi

) ⊆"n
i=1 AssMλi ⊆

"
λ∈Λ AssMλ, where the first inclusion follows from applying (6) to the split exact sequence 0 → Mλj →!n

i=j Mλi
→

!n
i=j+1 Mλi

→ 0 for 1 ! j ! n− 1. #
We often use the following notation throughout the paper.

Notation 2.4. For Θ ∈ {Supp, supp,Ass} we denote by Θ−1(Φ) the subcategory of ModR consisting of modules X with
Θ(X) ⊆ Φ, and put Θ−1

fg (Φ) = Θ−1(Φ) ∩modR.

The following statements are direct consequences of Proposition 2.3.

Corollary 2.5. Let Φ be a subset of SpecR.

(1) supp−1
fg (Φ) = Supp−1

fg (Φ) is a Serre subcategory of modR, while Supp−1(Φ) is a localizing subcategory of ModR.

(2) supp−1(Φ) is closed under direct sums, direct summands and extensions.
(3) The subcategory Ass−1

fg (Φ) of modR is closed under extensions and submodules, while the subcategory Ass−1(Φ) of
ModR is closed under direct sums, extensions and submodules.

(4) There are inclusions Supp−1(Φ) ⊆ supp−1(Φ) ⊆ Ass−1(Φ) of subcategories of ModR.

Now we can give a characterization of specialization-closed subsets in terms of closure properties of subcategories.

Theorem 2.6. The following are equivalent for any subset Φ of SpecR.
(1) Φ is specialization-closed.
(2) Ass−1

fg (Φ) is closed under quotient modules.

(3) Ass−1
fg (Φ) is Serre.

(4) supp−1(Φ) is closed under submodules.
(5) supp−1(Φ) is localizing.

(6) Ass−1(Φ) is closed under quotient modules.
(7) Ass−1(Φ) is localizing.
(8) Ass−1

fg (Φ) = Supp−1
fg (Φ).

(9) Ass−1(Φ) = supp−1(Φ).
(10) supp−1(Φ) = Supp−1(Φ).
(11) Ass−1(Φ) = Supp−1(Φ).

Proof. The implications (7) ⇔ (6) ⇔ (1) ⇔ (2) ⇔ (3) ⇐ (8) hold by Corollary 2.5(3), [19, Corollary 2.7] (see also [10,
page 425]) and [29, Theorem 4.1]. If Φ is specialization-closed, then the equality cl(AssM) = SuppM for M ∈ modR
shows Ass−1

fg (Φ) = Supp−1
fg (Φ). This proves the implication (1) ⇒ (8). Using the assertions of Corollary 2.5 for ModR

and Proposition 2.3, we can easily check that the implications (1) ⇒ (11) ⇒ (10) ⇒ (5) ⇒ (4) and (11) ⇒ (9) ⇒ (4) hold.
It remains to show the implication (4) ⇒ (1). Assume (4) and take p ∈ Φ. Then R/p ⊆ ER(R/p) ∈ supp−1(Φ), and

hence R/p ∈ supp−1(Φ). Therefore V(p) = SuppR/p = suppR/p ⊆ Φ, and thus Φ is specialization-closed. #

3. Local cohomology with respect to a specialization-closed subset

First of all, we introduce the torsion functor and the local cohomology functor with respect to a specialization-closed
subset, extending the torsion functor and the local cohomology functor with respect to an ideal.

Definition 3.1. Let Φ be a subset of SpecR. We define the Φ-torsion functor ΓΦ : ModR → ModR by ΓΦ(M) =
{x ∈ M | Supp(Rx) ⊆ Φ} for M ∈ ModR. If Φ is specialization-closed, then we have natural isomorphisms ΓΦ(−) ∼=
lim−→V(I)⊆Φ

ΓI(−) ∼=
"

V(I)⊆Φ ΓI(−). The first isomorphism says that ΓΦ : ModR → ModR is a left exact functor, and for

each integer n we can consider its nth right derived functor Hn
Φ : ModR → ModR, which we call the nth local cohomology

functor with respect to Φ. There is a natural isomorphism Hn
Φ(−) ∼= lim−→V(I)⊆Φ

Hn
I (−).

We state several basic properties of the torsion and local cohomology functors with respect to a specialization-closed
subset Φ, which are well-known in the case where Φ is closed.

Proposition 3.2. Let Φ be a specialization-closed subset of SpecR.



4 HIROKI MATSUI, TRAN TUAN NAM, RYO TAKAHASHI, NGUYEN MINH TRI, AND DO NGOC YEN

(1) For an R-module M , there are implications

(a) ΓΦ(M) = M ⇔ SuppM ⊆ Φ ⇔ AssM ⊆ Φ ⇒ H>0
Φ (M) = 0, (b) ΓΦ(M) = 0 ⇔ AssM ⊆ Φ∁.

(2) For an integer n, one has SuppHn
Φ(M) ⊆ Φ, ΓΦ(H

n
Φ(M)) = Hn

Φ(M) and H>0
Φ (Hn

Φ(M)) = 0.
(3) One has ΓΦ(M/ΓΦ(M)) = 0 and Hi

Φ(M/ΓΦ(M)) ∼= Hi
Φ(M) for all i > 0.

(4) For a family {Mλ}λ∈Λ in ModR and an integer n, there is a natural isomorphism Hn
Φ(

!
λ∈Λ Mλ) ∼=

!
λ∈Λ Hn

Φ(Mλ).
(5) Let p be a prime ideal of R. Let Φ be a specialization-closed subset of SpecR, and put

Φp = {P ∈ SpecRp | P ∩R ∈ Φ}.

Then one has an isomorphism Hn
Φ(M)p ∼= Hn

Φp
(Mp) for all R-modules M and integers n.

Proof. (1a) Note that SuppM =
"

x∈M SuppRx. This implies that ΓΦ(M) = M if and only if SuppM ⊆ Φ, if and
only if AssM ⊆ Φ since Φ is specialization-closed. When SuppM ⊆ Φ, one has ΓΦ(En(M)) = En(M) for all n " 0 by
Proposition 2.3(1)(2). Hence ΓΦ(E(M)) = E(M), which implies H>0

Φ (M) = 0. Thus the first assertion follows.
(1b) If x is a nonzero element of M with SuppRx ⊆ Φ, then ∅ ∕= AssRx ⊆ SuppRx and hence AssRx∩Φ is nonempty.

If p is a prime ideal in AssM ∩ Φ, then p = ann(x) for some x ∈ M . As R/p ∼= Rx, we have AssRx = {p} ⊆ Φ, which
implies SuppRx ⊆ Φ since Φ is specialization-closed. Now the second assertion follows.

(2) By (1) a prime ideal p is in Φ if and only if ΓΦ(ER(R/p)) ∕= 0, if and only if ΓΦ(ER(R/p)) = ER(R/p). We see that
SuppΓΦ(En(M)) ⊆ Φ for an R-module M and an integer n " 0. Since Supp−1

ModR(Φ) is a localizing subcategory of ModR
by Corollary 2.5(1), we have SuppHn

Φ(M) ⊆ Φ. Therefore ΓΦ(H
n
Φ(M)) = Hn

Φ(M) and H>0
Φ (Hn

Φ(M)) = 0 by (1a).
(3) The assertion is easy to deduce from assertion (2).
(4) The functor ΓΦ = lim−→V(I)⊆Φ

ΓI commutes with direct sums of modules. As R is noetherian,
!

λ∈Λ E(Mλ) gives

an injective resolution of
!

λ∈Λ Mλ; see [23, Theorem 18.5] for instance. We obtain isomorphisms Hn
Φ(

!
λ∈Λ Mλ) ∼=

Hn(ΓΦ(
!

λ∈Λ E(Mλ))) ∼=
!

λ∈Λ Hn(ΓΦ(E(Mλ))) ∼=
!

λ∈Λ Hn
Φ(Mλ).

(5) The assignments V(I) .→ V(IRp) and V(J) .→ V(J ∩R), where I, J are ideals of R,Rp respectively, give mutually
inverse inclusion-preserving bijections between the set A of closed subsets Z of SpecR with p ∈ Z ⊆ Φ and the set B of
closed subsets W of SpecRp with ∅ ∕= W ⊆ Φp. Note that p ∈ Z if Hn

Z(M)p ∕= 0, and Hn
W (Mp) = 0 if W = ∅. Thus

Hn
Φ(M)p ∼= ( lim−→

Z∈C

Hn
Z(M))p ∼= lim−→

Z∈C

(Hn
Z(M)p) = lim−→

Z∈A

(Hn
Z(M)p) ∼= lim−→

W∈B

(Hn
W (Mp)) = lim−→

W∈Cp

(Hn
W (Mp)) ∼= Hn

Φp
(Mp),

where C (resp. Cp) stands for the set of closed subsets of SpecR (resp. SpecRp) contained in Φ (resp. Φp). #

Next we define the cohomological dimension of a specialization-closed subset, which extends the celebrated invariant
of the cohomological dimension of an ideal.

Definition 3.3. Let Φ be a specialization-closed subset of SpecR. We define the cohomological dimension of Φ by

cdΦ = sup{i ∈ Z | Hi
Φ(M) ∕= 0 for some M ∈ ModR} = inf{i ∈ Z | H>i

Φ (M) = 0 for all M ∈ ModR} ∈ N ∪ {∞,−∞}.

For an ideal I of R we set cd I = cdV(I) and call it the cohomological dimension of I.

Remark 3.4. Let Φ be a specialization-closed subset of SpecR. Then:
(1) cdΦ = −∞ ⇔ Φ = ∅. (2) cdΦ ! 0 ⇔ ΓΦ is exact. (3) cdΦ ! dimR. (4) cdΦ ! sup{cd I | V(I) ⊆ Φ}.
Indeed, if p ∈ Φ, then H0

Φ(ER(R/p)) ∕= 0 by Proposition 3.2(1b), which deduces (1). Item (3) follows from Grothendieck’s
vanishing theorem [4, 6.1.2], while (2) and (4) are clear.

The following proposition is well-known in the case where Φ is closed.

Proposition 3.5. Let Φ be a specialization-closed subset of SpecR. Assume either that R has finite Krull dimension or
that Φ is closed. Then there is an equality cdΦ = sup{i ∈ Z | Hi

Φ(R) ∕= 0}.

Proof. It suffices to prove that cdΦ ! n if and only if H>n
Φ (R) = 0 for each n ∈ Z. We may assume H>r

Φ (R) = 0 for some
integer r. Indeed, if dimR = d < ∞, then Hi

Φ(R) = 0 for all i > d. If Φ = V(I) for some ideal I, then Hi
Φ(R) = 0 for all

i > s, where I is generated by s elements.
The “only if” part is evident. To show the “if” part, assume H>n

Φ (R) = 0 and let M be an R-module. Take a free

resolution · · · f2−→ F1
f1−→ F0

f0−→ M → 0 and set Mi = Im fi for each i. Using Proposition 3.2(4), we get Hi
Φ(M) ∼=

Hi+1
Φ (M1) ∼= · · · ∼= Ht

Φ(Mt−i) = 0 for any i > n, where t = max{i, r + 1}. Thus cdΦ ! n as desired. #
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For a subset Φ of SpecR, put LΦ = {X ∈ D(ModR) | suppX ⊆ Φ} and L⊥
Φ = {X ∈ D(ModR) | HomD(ModR)(LΦ, X) =

0}. Then by [24, Theorem 2.8] the subcategory LΦ is generated by a set. It follows from [20, Propositions 4.9.1, 4.11.2
and Theorem 5.6.1] and [25, Lemma 4.5] that there exist exact functors

LΦ

iΦ !! D(ModR)
λΦ !!

γΦ

"" L⊥
Φ ,

jΦ
""

where iΦ and jΦ are inclusion functors with iΦ ⊣ γΦ and λΦ ⊣ jΦ, such that:

(1) There is a functorial exact triangle γΦ(X)
θΦ(X)−−−−→ X

ηΦ(X)−−−−→ λΦ(X) → γΦ(X)[1] for X ∈ D(ModR) which is isomorphic
to any exact triangle X ′ → X → X ′′ → X ′[1] with X ′ ∈ LΦ and X ′′ ∈ L⊥

Φ .
(2) If Φ is specialization-closed, then γΦ ∼= RΓΦ and L⊥

Φ = LΦ∁ .

For a complex homologically bounded below, the image by λΦ can be described by using its minimal injective resolution
as follows.

Proposition 3.6. Let Φ be a specialization-closed subset of SpecR. Let X ∈ D(ModR) with H≪0(X) = 0. Then there is
an isomorphism λΦ(X) ∼= E(X)/ΓΦ(E(X)) in D(ModR).

Proof. Fix an integer n. Write En(X) =
!

p∈SpecR ER(R/p)⊕An,p , where An,p is a set. Then the lower left holds, which

implies the lower right by Proposition 2.3(2).
#
ΓΦ(En(X)) =

!
p∈Φ ER(R/p)⊕An,p ,

En(X)/ΓΦ(En(X)) =
!

p∈Φ∁ ER(R/p)⊕An,p .

#
suppΓΦ(E(X)) =

"
n∈Z AssΓΦ(En(X)) ⊆ Φ,

supp(E(X)/ΓΦ(E(X))) =
"

n∈Z Ass(En(X)/ΓΦ(En(X))) ⊆ Φ∁.

Thus, the natural exact triangle ΓΦ(E(X)) → E(X) → E(X)/ΓΦ(E(X)) → ΓΦ(E(X))[1] is isomorphic to the exact triangle

γΦ(X)
θΦ(X)−−−−→ X

ηΦ(X)−−−−→ λΦ(X) → γΦ(X)[1] in D(ModR), which shows the assertion of the proposition. #

Next we introduce the transform functor with respect to a specialization-closed subset, which is also a generalization
of the transform functor of an ideal.

Definition 3.7. Let Φ be a subset of SpecR. The Φ-transform functor Dn
Φ : ModR → ModR is defined by Dn

Φ(M) =
Hn(λΦ(M)) for M ∈ ModR. Applying H0 to ηΦ(M) : M → λΦ(M), we get a natural map ζΦ(M) : M → D0

Φ(M).

Remark 3.8. Let Φ be a specialization-closed subset of SpecR.

(1) For each M ∈ ModR, there are equivalences

M ∈ supp−1
ModR(Φ

∁) ⇔ RΓΦ(M) ∼= 0 ⇔ ηΦ(M) : M
∼=−→ λΦ(M) ⇔ ζΦ(M) : M

∼=−→ D0
Φ(M) and D>0

Φ (M) = 0.

In fact, if RΓΦ(M) ∼= 0, then γΦ(M) = 0 and M ∼= λΦ(M) ∼= E(M)/ΓΦ(E(M)) by Proposition 3.6, which implies

M ∈ supp−1
ModR(Φ

∁). The other implications follow from Propositions 2.3(2) and 3.2(1).

(2) Let M ∈ ModR. The exact triangle RΓΦ(M)
θΦ(M)−−−−→ M

ηΦ(M)−−−−→ λΦ(M) → γΦ(M)[1] yields:

(i) D<0
Φ (M) = 0, (ii) 0 → H0

Φ(M) → M
ζΦ(M)−−−−→ D0

Φ(M) → H1
Φ(M) → 0 is exact, (iii) Di

Φ(M) ∼= Hi+1
Φ (M) for i " 1.

In particular, for an injective R-module I, there is a natural isomorphism D0
Φ(I)

∼= I/ΓΦ(I).
(3) Let 0 → L → M → N → 0 be an exact sequence in ModR. Then it induces an exact triangle λΦ(L) → λΦ(M) →

λΦ(N) → λΦ(L)[1], which induces a long exact sequence 0 → D0
Φ(L) → D0

Φ(M) → D0
Φ(N) → D1

Φ(L) → · · · . This
means that the functor D0

Φ is left exact and the sequence (Di
Φ)i"0 is a cohomological δ-functor in the sense of [21,

Chapter XX, §7]. Thus we can consider the right derived functor RD0
Φ : D+(ModR) → D+(ModR) on the derived

category of bounded below complexes, and we have an isomorphism Di
Φ

∼= HiRD0
Φ for i ∈ Z. Actually, there are

natural isomorphisms λΦ(X) ∼= E(X)/ΓΦ(E(X)) ∼= D0
Φ(E(X)) ∼= RDΦ(X) for X ∈ D+(ModR), where the first

isomorphism follows from Proposition 3.6. For an ideal I of R, the V(I)-transform functors are nothing but the
I-transform functors: Dn

V(I)
∼= Dn

I := lim−→i∈N ExtnR(I
i,−) for all n ∈ Z. This follows from the above argument and [4,

Exercise 2.2.2]: Dn
V(I)(M) ∼= HnRD0

V(I)(M) ∼= Dn
I (M) for all n ∈ Z.

We state the relationship between Φ-transform functors and local cohomology functors with respect to Φ, which gives
a generalization of [4, Corollary 2.2.8].

Proposition 3.9. Let Φ be a specialization-closed subset of SpecR. Let M be an R-module.

(1) One has D0
Φ(H

0
Φ(M)) = 0.

(2) The natural map D0
Φ(M) → D0

Φ(M/H0
Φ(M)) is an isomorphism.
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(3) The equality D0
Φ(ζΦ(M)) = ζΦ(D

0
Φ(M)) holds, which is an isomorphism D0

Φ(M) → D0
Φ(D

0
Φ(M)).

(4) It holds that H0
Φ(D

0
Φ(M)) = 0 = H1

Φ(D
0
Φ(M)).

(5) The map Hn
Φ(ζΦ(M)) : Hn

Φ(M) → Hn
Φ(D

0
Φ(M)) is an isomorphism for n " 2.

Proof. (1) The assertion can be deduced from Proposition 3.2(2) and Remark 3.8(2)(ii).
(2) Apply the functor D0

Φ to the short exact sequence 0 → H0
Φ(M) → M → M/H0

Φ(M) → 0, and use (1), Remark
3.8(2)(iii) and Proposition 3.2(2).

(3) By Proposition 3.6, for any M ∈ ModR there is a commutative diagram with exact rows:

0 !! M !!

ζΦ(M)

##

E0(M) !!

##

E1(M)

##
0 !! D0

Φ(M) !! E0(M)/ΓΦ(E0(M)) !! E1(M)/ΓΦ(E1(M))

Let X be the subcategory of ModR consisting of R-modules M with AssEi(M) ⊆ Φ∁ for i = 0, 1. We establish a claim.

Claim. The subcategory X of ModR is reflective, that is, the inclusion functor r : X ↩→ ModR admits a left adjoint l,
which is D0

Φ : ModR → X . Furthermore, the unit u of this adjunction is ζΦ.

Proof of Claim. Take an R-module N ∈ X . There is a natural homomorphism Θ : HomR(D
0
Φ(M), N) → HomR(M,N)

given by f .→ f ◦ ζΦ(M). It suffices to verify that Θ is an isomorphism. Take g ∈ HomR(M,N) and let gi ∈
HomR(Ei(M),Ei(N)) be an extension of g for each i. Fix i ∈ {0, 1}. As N ∈ X , we have ΓΦ(Ei(N)) = 0 and ΓΦ(g

i) = 0.
Thus gi factors through Ei(M)/ΓΦ(Ei(M)), and hence g factors through D0

Φ(M). This shows the surjectivity of Θ. Next,

take f ∈ HomR(D
0
Φ(M), N) with f ◦ ζΦ(M) = 0. Then the composition p : E0(M) → E0(M)/ΓΦ(E0(M))

f0

−→ E0(N)
factors the 0th differential d0 : E0(M) → E1(M), that is, there is a map s : E1(M) → E0(N) with p = sd. Similarly
as above, ΓΦ(s) = 0 and s factors through E1(M)/ΓΦ(E1(M)). Therefore f0 factors through the 0th differential of
E(M)/ΓΦ(E(M)). This shows f = 0. □

Let c be the counit of the adjunction. Then the counit-unit equations are 1l = cl ◦ lu and 1r = rc ◦ ur. Hence
1rl = rcl ◦ rlu and 1rl = rcl ◦ url. As the right adjoint r is the inclusion functor, which is fully faithful. Hence the counit
c is an isomorphism, and so is rcl. Therefore the equality rlu = url holds and it is an isomorphism. This means that the
equality ζΦ ·D0

Φ = D0
Φ · ζΦ holds and it is an isomorphism.

(4) Thanks to (2), we may assume H0
Φ(M) = 0. Applying the snake lemma to the commutative diagram

0 !! D0
Φ(M)

D0
Φ(ζΦ(M))

!! D0
Φ(D

0
Φ(M)) !! D0

Φ(H
1
Φ(M)) !! D1

Φ(M)

0 !! M
ζΦ(M) !!

ζΦ(M)

$$

D0
Φ(M) !!

ζΦ(D0
Φ(M))

$$

H1
Φ(M) !!

ζΦ(H1
Φ(M))

$$

0

induced by (2)(ii) and (3) of Remark 3.8, we have an exact sequence

H0
Φ(M) = 0 → H0

Φ(D
0
Φ(M)) → H0

Φ(H
1
Φ(M)) = H1

Φ(M)
δ−→ H1

Φ(M) → H1
Φ(D

0
Φ(M)) → H1

Φ(H
1
Φ(M)) = 0,

where the second and third equalities follow from Proposition 3.2(2). It is seen from (3) that the map δ is the identity
map. The above exact sequence now tells us that H0

Φ(D
0
Φ(M)) = 0 = H1

Φ(D
0
Φ(M)).

(5) As H>0
Φ (H0

Φ(M)) = 0 by Proposition 3.2(2), the natural map Hn
Φ(M) → Hn

Φ(M/H0
Φ(M)) is an isomorphism. Thus

we may assume H0
Φ(M) = 0. Since H>0

Φ (H1
Φ(M)) = 0 by Proposition 3.2(2) again, the long exact sequence induced from

0 → M → D0
Φ(M) → H1

Φ(M) → 0 completes the proof. #

4. n-wide subcategories

We start by giving the definition of an n-wide subcategory of ModR.

Definition 4.1. Let n " 0 be an integer. A subcategory X of ModR is said to be closed under n-kernels (resp. n-
cokernels) if for every exact sequence 0 → M → X0 → · · · → Xn → N → 0 in ModR with Xi ∈ X for all i the module
M (resp. N) is in X . We say that X is n-wide if it is closed under extensions, n-kernels and n-cokernels.
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Remark 4.2. (1) A subcategory X of ModR is n-wide if and only if for an exact sequence

Mn → · · · → M0 → M → M0 → · · · → Mn

in ModR with Mi,M
i ∈ X for all i one has M ∈ X .

(2) If a subcategory of ModR is closed under n-kernels (resp. n-cokernels), then it is closed under (n+ 1)-kernels (resp.
(n+ 1)-cokernels). In particular, being n-wide implies being (n+ 1)-wide.

(3) Let X1, . . . ,Xr be subcategories ofModR. If Xi is closed under ni-kernels (resp. ni-cokernels) for all i, then X1∩· · ·∩Xr

is closed under max{n1, . . . , nr}-kernels (resp. max{n1, . . . , nr}-cokernels). In particular, if Xi is ni-wide for all i,
then X1 ∩ · · · ∩ Xr is max{n1, . . . , nr}-wide.

(4) A subcategory of ModR is closed under 0-kernels (resp. 0-cokernels) if and only if it is closed under submodules (resp.
quotient modules). In particular, being 0-wide and closed under direct sums is equivalent to being localizing.

(5) A subcategory of ModR is closed under 1-kernels (resp. 1-cokernels) if and only if it is closed under kernels (resp.
cokernels). In particular, being 1-wide is equivalent to being wide.

We give a necessary condition for a specialization-closed subset to have cohomological dimension at most n in terms of
an n-wide subcategory.

Theorem 4.3. Let Φ ⊆ SpecR be specialization-closed, and n " 0 an integer. If cdΦ ! n, then supp−1
ModR(Φ

∁) is n-wide.

Proof. Consider an exact sequence 0 → M
fn+1−−−→ Xn

fn−→ · · · f1−→ X0
f0−→ N → 0 with Xi ∈ supp−1

ModR(Φ
∁) for all i. Then

H"0
Φ (Xi) = 0 by Remark 3.8(1). Set Uk = Im fk for 0 ! k ! n+ 1. The exact sequence 0 → Uk+1 → Xk → Uk → 0 tells

H0
Φ(Uk+1) = 0 and Hi

Φ(Uk) ∼= Hi+1
Φ (Uk+1) for i " 0 and 0 ! k ! n. Thus Hi

Φ(N) ∼= Hi+1
Φ (U1) ∼= · · · ∼= Hi+n+1

Φ (Un+1) = 0

for i " 0. Also, Hi
Φ(M) ∼= Hi−1

Φ (Un) ∼= · · · ∼= H0
Φ(Un−i+1) = 0 for 1 ! i ! n and H0

Φ(M) = H0
Φ(Un+1) = 0. It follows that

H"0
Φ (M) = H"0

Φ (N) = 0, and Remark 3.8(1) implies that M,N belong to supp−1
ModR(Φ

∁). #

It is natural to ask whether the converse of the implication in Theorem 4.3 holds.

Question 4.4. Let Φ be a specialization-closed subset of SpecR, and let n " 0 be an integer. Suppose that supp−1
ModR(Φ

∁)
is n-wide. Then, does it hold that cdΦ ! n?

We shall prove that this question is affirmative in several cases. For it, we need some preparation.

Proposition 4.5. Let Φ be a specialization-closed subset of SpecR. Let M be an R-module. Let n " 0 be an integer.
Then the following are equivalent.

(1) One has Hi
Φ(M) = 0 for all 0 ! i ! n.

(2) The inclusion AssEi(M) ⊆ Φ∁ holds for all 0 ! i ! n.

(3) There exists an injective resolution I of M such that Ass Ii ⊆ Φ∁ for all 0 ! i ! n.

Proof. The equivalence (2) ⇔ (3) is obvious. If (3) holds, then ΓΦ(I
i) = 0 for all 0 ! i ! n by Proposition 3.2(2), and

hence Hi
Φ(M) = Hi(ΓΦ(I)) = 0 for all 0 ! i ! n. Thus (3) implies (1).

We prove the implication (1) ⇒ (3) by induction on n. When n = 0, there are inclusions

M ↩→ D0
Φ(M) = H0(E(M)/ΓΦ(E(M))) ↩→ E0(M)/ΓΦ(E0(M)) ∈ Ass−1

ModR(Φ
∁)

by Remark 3.8(2) and Proposition 3.6. Let n " 1. Then, as H0
Φ(M) = 0, the induction basis yields an exact sequence

0 → M → I0 → N → 0 with I0 ∈ Ass−1
InjR(Φ

∁). The long exact sequence shows Hi
Φ(N) = 0 for all 0 ! i ! n− 1. Applying

the induction hypothesis to N , we get an injective resolution 0 → N → I1 → I2 → · · · with Ass Ii ⊆ Φ∁ for all 1 ! i ! n.
Splicing the above two exact sequences, we obtain a desired injective resolution 0 → M → I0 → I1 → · · · . #

We recall the definition of a balanced big Cohen–Macaulay module over a local ring, whose existence in full generality
has recently been proved by André [1].

Definition 4.6. Let R be a local ring with maximal ideal m. An R-module B is called a balanced big Cohen–Macaulay
R-module if mB ∕= B and every system of parameters of R is a B-regular sequence.

Remark 4.7. Let R be a local ring. Let I be an ideal of R with dimR/I = dimR. Then every balanced big Cohen–
Macaulay R/I-module is a balanced big Cohen–Macaulay R-module. This is straightforward from the definition.

We give a necessary condition for supp−1(Φ∁) to be n-wide, whose proof uses a balanced big Cohen–Macaulay module.
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Proposition 4.8. Let n " 0 be an integer. Let Φ be a specialization-closed subset of SpecR. Suppose that supp−1
ModR(Φ

∁)
is n-wide. Then Hi

Φ(R)p = 0 for all integers i > n and all prime ideals p of R with ht p ! i.

Proof. In view of Remarks 3.4(3), 4.2(2) and Proposition 3.2(5), it suffices to prove that Hn+1
Φp

(Rp) = 0 for every prime

ideal p with ht p = n + 1. Assume contrarily that Hn+1
Φp

(Rp) ∕= 0 for some such prime ideal p. Let S be the completion

of the local ring Rp. Then dimS = dimRp = n + 1. Applying [14, Theorem 2.8], we find a prime ideal P of S with
dimS/P = n + 1 such that PS + P is pS-primary for all P ∈ Φp. It follows from [1] that there exists a balanced big
Cohen–Macaulay S/P -module B. Then B is also a balanced big Cohen–Macaulay S-module by Remark 4.7. We have
µi(pS,B) = 0 for all i < n+ 1 and µn+1(pS,B) > 0 by [28, Theorem 3.2]. Using Proposition 2.3(1)(2), we observe that

AssS(Ei
S(B)) ⊆ suppS(B) \ {pS} ⊆ SuppS(B) \ {pS} ⊆ V(annS B) \ {pS} ⊆ V(P ) \ {pS} ⊆ Ψ∁

for all i < n+ 1, where Ψ := {Q ∈ SpecS | Q∩Rp ∈ Φp} = {Q ∈ SpecS | Q∩R ∈ Φ} . Note that Ei
S(B) is also injective

as an R-module. Proposition 3.2(1b) shows ΓΨ(Ei
S(B)) = 0, from which we easily see that ΓΦ(Ei

S(B)) = 0. Propositions

2.3(2) and 3.2(1b) imply suppR(Ei
S(B)) = AssR(Ei

S(B)) ⊆ Φ∁, whence Ei
S(B) ∈ X := supp−1(Φ∁) for all i < n+ 1.

Now suppose that X is n-wide. Then the image C of the nth differential map in ES(B) belongs to X . We have ES(C) =
En+1
S (B), which contains ES(S/pS) as a direct summand. There are injective homomorphisms R/p ↩→ S/pS ↩→ ES(C).

It is seen that p ∈ AssR C ⊆ suppR C ⊆ Φ∁, which implies Φp = ∅ since Φ is specialization-closed. This contradicts our

assumption that Hn+1
Φp

(Rp) ∕= 0. Consequently, X is not n-wide. #

Now we give several answers to Question 4.4 (see (4) and (5) of Remark 4.2). The second assertion recovers [2, (2)⇔ (4)
in Theorem 4.9].

Theorem 4.9. Let Φ be a specialization-closed subset Φ of SpecR.

(1) cdΦ ! 0 if and only if supp−1(Φ∁) is localizing.

(2) cdΦ ! 1 if and only if supp−1(Φ∁) is wide.

(3) Suppose that d := dimR is such that 0 < d < ∞. Then cdΦ ! d− 1 if and only if supp−1(Φ∁) is (d− 1)-wide.

Proof. The “only if” parts of the three assertions follow from Theorem 4.3 and (4) and (5) of Remark 4.2. So we have

only to prove the “if” parts. Set X = supp−1(Φ∁).
(1) Fix an R-module M and put N = M/ΓΦ(M). Proposition 3.2 implies AssN ⊆ Φ∁, and ER(N) is in X by

Proposition 2.3(2). Now assume that X is localizing. Then X is closed under submodules, and hence N belongs to X . By
Remark 3.8(1) we have RΓΦ(N) = 0. Using Proposition 3.2(3), we obtain H>0

Φ (M) = 0.

(2) Fix an R-module M and put N = D0
Φ(M). Proposition 3.9(4) implies H#1

Φ (N) = 0, and AssEi(N) ⊆ Φ∁ for i = 0, 1
by Proposition 4.5. Proposition 2.3(2) implies Ei(N) ∈ X for i = 0, 1. Now, suppose that X is wide. Then X is closed

under kernels, and hence N is in X . Remark 3.8(1) shows RΓΦ(N) = 0. By Proposition 3.9(5) we conclude H"2
Φ (M) = 0.

(3) Suppose that X is (d− 1)-wide. Then it is observed by Proposition 4.8 that Hi
Φ(R)p = 0 for all integers i " d and

all prime ideals p. Hence Hi
Φ(R) = 0 for all integers i " d, and Proposition 3.5 concludes cdΦ ! d− 1. #

The following proposition gives a necessary condition for n-wideness. For an ideal I of R we denote by D(I) the set of
prime ideals of R not containing I.

Proposition 4.10. Let I be an ideal of R. Let n " 0 be an integer. Let M be a finitely generated R-module with IM ∕= M .
If supp−1 D(I) is n-wide, then grade(I,M) ! n.

Proof. Suppose contrarily that grade(I,M) > n. Then H#n
I (M) = 0, and AssEi(M) ⊆ D(I) for all i ! n by Proposition

4.5. Using Proposition 2.3(2), we have Ei(M) ∈ supp−1 D(I) for all i ! n. There is an exact sequence 0 → M → E0(M) →
· · · → En(M), and since supp−1 D(I) is closed under n-kernels, we get M ∈ supp−1 D(I). We obtain AssEi(M) ⊆ D(I)
for all i " 0 by Proposition 2.3(2) again, and Hi

I(M) = 0 for all i ∈ Z by Proposition 4.5 again. This contradicts [4,
Theorem 6.2.7], and thus grade(I,M) ! n. #

As an application of this proposition, we give an example of a subcategory which is precisely n-wide.

Example 4.11. Let x = x1, . . . , xn be a sequence of elements of R. Then supp−1 D(x) is n-wide and which is not
(n− 1)-wide if x is an R-regular sequence.

Proof. Since I := (x) is generated by n-elements, one has cd I ! n and hence supp−1 D(I) is n-wide by Theorem 4.3. If
x is a regular sequence, then grade I = n and the subcategory supp−1 D(x) is not (n− 1)-wide by Proposition 4.10. #
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Recall that an ideal I of R is called perfect if pdR R/I = grade I. We now obtain the following theorem, which also
gives affirmative answers to Question 4.4.

Theorem 4.12. (1) Suppose either that
(i) R has prime characteristic p > 0 and I is a perfect ideal, or that
(ii) R is a semigroup ring R = S[∆] for some affine semigroup (i.e., finitely generated commutative monoid) ∆ and

some noetherian ring S, and I is a perfect ideal generated by elements of ∆.
The following are equivalent.
(a) cd I ! n. (b) supp−1 D(I) is n-wide. (c) grade(I,M) ! n for all M ∈ modR with IM ∕= M . (d) grade I ! n.

(2) Let (R,m, k) be a complete regular local ring of Krull dimension d such that k is separably closed. Let I be an ideal of
R such that V(I) \ {m} is connected. Then cd I ! d− 2 if and only if supp−1 D(I) is (d− 2)-wide.

Proof. (1) The implication (c) ⇒ (d) is clear, while (a) ⇒ (b) ⇒ (c) follow from Theorem 4.3 and Proposition 4.10. The
proofs of [31, Lemma 2.1 and Corollaries 2.2, 2.4] show (d) ⇒ (a).

(2) The “only if” part follows from Theorem 4.3. Let us show the “if” part. Proposition 4.10 shows grade I ! d − 2,
which implies dimR/I " 2 since R is a Cohen–Macaulay local ring. We obtain cd I ! d− 2 by [17, Theorem 1.1]. #

We state another result in relation to Question 4.4.

Theorem 4.13. The following are equivalent for an integer n " 0.

(1) The subcategory supp−1((MaxR)∁) is n-wide.
(2) The subcategory supp−1 Φ is n-wide for every generalization-closed subset Φ of SpecR.
(3) There is an inequality cdΦ ! n for every specialization-closed subset Φ of SpecR.
(4) The inequality dimR ! n holds.

Proof. The implications (4) ⇒ (3) and (3) ⇒ (2) follow from Remark 3.4(3) and Theorem 4.3 respectively, while (2) ⇒
(1) is obvious. Let us show (1) ⇒ (4). Assume dimR > n. Then there is a maximal ideal m of R with h := dimRm =

htm > n. Since supp−1((MaxR)∁) is n-wide, Proposition 4.8 implies Hh
MaxR(R)m = 0. Using Proposition 3.2(5), we have

0 = Hh
(MaxR)m

(Rm) = Hh
mRm

(Rm), which gives a contradiction. We conclude that dimR ! n. #

The following result is a direct consequence of Theorems 4.3 and 4.13.

Corollary 4.14. It holds that cd(MaxR) < ∞ if and only if dimR < ∞.

The reader may wonder if there exists a specialization-closed subset Φ of SpecR with cdΦ = ∞. The above corollary
shows that there actually does: whenever R has infinite Krull dimension, MaxR is such a specialization-closed subset.

Finally, we clarify that Question 4.4 always has a negative answer for 2 ! n ! dimR − 2. For this, we prove a
proposition.

Proposition 4.15. Let 1 ! r ! s be integers. Let a, b be ideals of R generated by r, s elements, respectively. Put I = a∩b
and J = a+ b. Assume Hr+s

J (R) ∕= 0. Then cd I = r + s− 1, and supp−1 D(I) is s-wide.

Proof. The Mayer–Vietoris sequence [4, 3.2.3] gives an exact sequence · · · → Hi
J(M) → Hi

a(M) ⊕ Hi
b(M) → Hi

I(M) →
Hi+1

J (M) → · · · for each R-module M . As a, b (resp. J) are generated by less than r + s (resp. r + s + 1) elements,

we have Hi
a(M) ⊕ Hi

b(M) = Hi+1
J (M) = 0 for all i " r + s. Hence H"r+s

I (M) = 0. The exact sequence Hr+s−1
I (R) →

Hr+s
J (R)( ∕= 0) → Hr+s

a (R)⊕Hr+s
b (R)(= 0) shows Hr+s−1

I (R) ∕= 0. It follows that cd I = r + s− 1.
Since a, b are generated by r, s elements, we have cd a ! r and cd b ! s. Theorem 4.3 shows that supp−1 D(a) is r-wide

and supp−1 D(b) is s-wide. It follows from Remark 4.2(2)(3) that supp−1 D(I) = supp−1 D(a)∩supp−1 D(b) is s-wide. #
The following example immediately follows from Proposition 4.15.

Example 4.16. Let x = x1, . . . , xt be a sequence of elements of R such that ht(x) = t " 4. Let t
2 ! s ! t − 2 be an

integer. Consider the ideal I = (x1, . . . , xt−s)∩(xt−s+1, . . . , xt). Then supp−1 D(I) is s-wide, but cd I = (t−s)+s−1 > s.

This example says that Question 4.4 has a negative answer whenever 2 ! n ! dimR − 2 (for example, one can take
s = n and t = n+ 2).
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