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ABSTRACT. In this paper, we consider a depth inequality of Auslander which holds for finitely generated
Tor-rigid modules over commutative Noetherian local rings. We raise the question of whether such a
depth inequality can be extended for n-Tor-rigid modules, and obtain an affirmative answer for 2-Tor-rigid
modules that are generically free. Furthermore, in the appendix, we use Dao’s eta function and determine
new classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular local rings.

1. INTRODUCTION

Throughout, R denotes a commutative Noetherian local ring with unique maximal ideal m and residue
field k, and all R-modules are assumed to be finitely generated.

In this paper we are concerned with the following theorem of Auslander [2], where depthR(a,M)
denotes the a-depth of M; see 2.3 and 2.7 for definitions and details.

Theorem 1.1. (Auslander [2]) Let R be a local ring, a be an ideal of R, and let M be a nonzero Tor-rigid
R-module. Then it follows that depthR(a,M)≤ depthR(a,R).

Our purpose is to investigate to what extent one can generalize Auslander’s inequality stated in
Theorem 1.1. Prior to stating our main result, we discuss some history and motivation concerning the
conclusion, as well as the hypotheses, of Theorem 1.1.

The depth inequality in Theorem 1.1 is a consequence of a result of Auslander [2, 4.3] which states
that, if M is a Tor-rigid module over a local ring R, then each non zero-divisor on M is also a non
zero-divisor on R, that is, the set of all associated primes of M contains that of R. As the celebrated
work of Auslander [2] and Lichtenbaum [37] shows that modules over regular local rings are Tor-rigid,
the conclusion of Theorem 1.1 holds over each regular local ring; see 2.7(i). Auslander considered the
question whether the same conclusion holds for modules of finite projective dimension and asked if
each module of finite projective dimension must be Tor-rigid; this yielded a conjecture known as the
Auslander’s zero divisor conjecture which claims that, for modules M of finite projective dimension,
each non zero-divisor on M is also a non zero-divisor on the ring considered. This conjecture, due
to the new intersection theorem established by Roberts, is now a theorem; see [44, 6.2.3, 13.4.1] for
the details. The query whether or not modules of finite projective dimension are Tor-rigid also came
known as the rigidity conjecture; this was formulated by Peskine and Szpiro [43] who made significant
contributions and established the conjecture for torsion modules of projective dimension two; see also
[12, 3.1]. The rigidity conjecture did not fare long: Heitmann [27] constructed a torsion-free module
of projective dimension two that is not Tor-rigid. However, the rigidity conjecture remains open over
complete intersections of codimension at least two, even over those that are one-dimensional domains;
see [12, 3.2, 3.3] and [16, 4.2]. There are other questions studied in the literature which are related to
Theorem 1.1 including the superheight conjecture; see, for example, [6].

Tor-rigidity, a subject of investigation in commutative algebra, is a delicate assumption in Theorem
1.1. In general, over non-regular local rings, it is very difficult to check if a given module is Tor-rigid.
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The work of Lichtenbaum [37, Theorem 3], along with that of Huneke and Wiegand [34, 1.9], imply
that modules of finite projective dimension over hypersurfaces (that are quotient of unramified regular
rings) are Tor-rigid; see 2.7(ii). A noteworthy development in this direction has been the utilization of
the theta function in the study of Tor-rigidity; the theta function was introduced by Hochster [32] and
subsequently used by Dao [15] to generalize the aforementioned fact on Tor-rigidity over hypersurfaces.
A consequence of Dao’s result is that modules over even dimensional simple hypersurface singularities
satisfy the depth inequality stated in Theorem 1.1; see A.2(i). As our results rely upon Tor-rigidity, in
Appendix A, we discuss the theta function and also consider a generalization of it to determine new
classes of n-Tor-rigid modules over complete intersections that are quotient of unramified regular local
rings.

The depth inequality stated in Theorem 1.1 can fail in general, even over complete intersection rings
as we see next:

Example 1.2. Let R = C[[x1, . . . ,xn,y1, . . . ,yn]]/(x1y1, . . . ,xnyn), M = R/(y1, . . . ,yn), and let a be the
ideal of R generated by x1, . . . ,xn. Then it follows that R is a complete intersection of codimension
and dimension n. Moreover, depthR(a,R) = 0 < n = depthR(a,M) so that the depth inequality stated
in Theorem 1.1 fails. Note that M is not Tor-rigid: for example, there is an R-module N such that
TorR

n (M,N) = 0 ̸= TorR
n+1(M,N); see [35, 4.1]. □

Observe that, for the R-module M in Example 1.2, it follows that depthR(a,M) ≤ depthR(a,R)+ n.
Also, M ∼= Ωn

RN for some R-module N, where N is (n+ 1)-Tor-rigid because modules over complete
intersection rings of codimension c are (c+ 1)-Tor-rigid [42, 1.6]. Motivated by these facts, we raise
the following question:

Question 1.3. Let R be a local ring, M be a nonzero R-module, and let a be an ideal of R. Assume
M ∼= Ωn

RN for some n ≥ 0 and some R-module N which is (n+ 1)-Tor-rigid. Then does it follow that
depthR(a,M)≤ depthR(a,R)+n? □

Note that, due to Theorem 1.1, Question 1.3 is true in case n = 0; see also 2.7. The question is also
true if R is a complete intersection ring of codimension c and n equals c; see 3.2. The main purpose
of this paper is to study Question 1.3 for the case where n = 1. For that case we are able to obtain an
affirmative answer to the question under mild conditions. More precisely, we prove:

Theorem 1.4. Let R be a local ring, a be an ideal of R, and let M be a nonzero R-module such
that M ∼= ΩRN for some R-module N which is 2-Tor-rigid and generically free (e.g., R is reduced).
If depthR(a,R)≥ 1, then it follows that depthR(a,M)≤ depthR(a,R)+1. □

The special case of Theorem 1.1 and Theorem 1.4, where the maximal ideal is considered, is also
worth discussing. Note, if a local ring R is not Cohen-Macaulay, then Theorem 1.1 implies that each
maximal Cohen-Macaulay R-module is not Tor-rigid. Therefore, Theorem 1.1 is also related to another
important conjecture known as the Small Cohen-Macaulay modules conjecture [31]; this conjecture
predicts that each complete local ring admits a maximal Cohen-Macaulay module. For example, there
are two-dimensional non-complete local domains R such that depthR(M) ≤ 1 = depth(R) for each R-
module M; see [31, page 11].

Theorem 1.1 produces several classes of modules that are not Tor-rigid over local rings of dimension
at most three; see [47, 4.8]. For example, by results of Hochster [30, 5.4, 5.6, 5.9], there are three-
dimensional non-Cohen-Macaulay local rings that admit maximal Cohen-Macaulay modules; these
modules are not Tor-rigid by Theorem 1.1. In Appendix B we give a similar example concerning
Theorem 1.4 where the ring considered is four-dimensional. These examples should indicate that the
problem of extending Theorem 1.1 is subtle over many rings, even over those that appear in nature.

Let us note that Theorem 1.4 follows as a consequence of our main result, namely Theorem 3.3;
see Corollary 3.4. Let us also note that Theorem 3.3 exploits the notion of Tor-rigidity developed by
Auslander, and establishes a depth inequality that is more general from the one stated in Theorem 1.4.
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The key ingredient for the proof of Theorem 3.3, and hence for the proof of Theorem 1.4, is Propo-
sition 2.8 which yields the existence of a certain short exact sequence involving the syzygy modules.
We should point out that Proposition 2.8 corroborates a result of Herzog and Popescu [29, 2.1] and of
Takahashi [45, 2.2], and it is proved at the end of section 4; see also Corollary 4.4.

As our results rely upon Tor-rigidity, in Appendix A, we use Dao’s eta function and show that mod-
ules that are eventually periodic of odd period are c-Tor-rigid over complete intersection rings (that are
quotient of unramified regular local rings) of codimension c.

2. PRELIMINARIES

In this section we record several preliminary definitions and results that are used in the paper.

2.1. Let R be a ring and let M and N be R-modules. If M⊕F ∼= N⊕G for some free R-modules F and G,
then M and N are said to be stably isomorphic. As it does not affect our arguments, we do not separate
isomorphic and stably isomorphic modules.

2.2. Let R be a ring and let M be an R-module. Given an integer n ≥ 1, we denote by Ωn
RM the nth

syzygy of M, namely, the image of the n-th differential map in a minimal free resolution of M. As a
convention, we set Ω0

RM = M and Ω1
RM = ΩRM.

The transpose TrM of M is the cokernel of f ∗ = HomR( f ,R), where F1
f−→ F0 → M → 0 is a part of

a minimal free resolution of M; see [3, 12.3].
Note that the transpose and the syzygy of M are uniquely determined up to isomorphism, since so is

a minimal free resolution of M.

2.3. Let R be a ring, M be an R-module, and let a be an ideal of R. If aM ̸= M, then the a-depth of M
(or the grade of a on M), denoted by depthR(a,M), is defined to be the common length of maximal M-
regular sequences in a; see [7, 1.2.6]. In case aM = M, then we set depthR(a,M) = ∞ (in particular, we
have depthR(a,0) =∞). Although we write depthR(a,R) throughout the paper, we note that depthR(a,R)
is nothing but the height of the ideal a in case R is a Cohen-Macaulay ring. Furthermore, we set
depthR(M) = depthR(m,M).

The following basic facts play an important role in the proofs of Proposition 2.10 and Theorem 3.3.

(i) depthR(a,M) = inf{depthRp
(Mp) | p ∈ V(a)}; see [7, 1.2.10(a)].

(ii) depthR(a,R) = inf{i ∈ Z : ExtiR(R/a,R) ̸= 0}; see [7, 1.2.10(e)].
(iii) If x ⊆ a is a regular sequence of length n on M, then depthR(a,M/xM) = depthR(a,M)−n; see

[7, 1.2.10(d)]. □

2.4. Let R be a ring, M be an R-module, and let n ≥ 1 be an integer. Then M is said to satisfy (S̃n) if
depthRp

(Mp) ≥ min{n,depth(Rp)} for all p ∈ SuppR(M). Note that, if R is Cohen-Macaulay, then M

satisfies (S̃n) if and only if M satisfies Serre’s condition (Sn); see, for example, [23, page 3]. □

We make use of the following properties in the proof of Proposition 2.8 and Corollary 3.10. Note
that, if n ≥ 0, then X̃n(R) denotes the set of all prime ideals p of R such that depth(Rp)≤ n.

2.5. Let R be a ring, M be a nonzero R-module, and let n ≥ 1 be an integer.

(i) If ExtiR(M,R) = 0 for all i = 1, . . . ,n, then it follows that Ωn
RTrΩn

RM ∼= TrM and so TrM is an
nth syzygy module; see [3, 2.17].

(ii) If M is an nth syzygy module, then M satisfies (S̃n) so that each R-regular sequence of length
at most n is also M-regular; see [3, 4.25] and [39, Prop. 2].

(iii) If M is locally free on X̃n−1(R) and M satisfies (S̃n), then it follows that M = Ωn
RN for some

R-module N, where ExtiR(N,R) = 0 for all i = 1, . . . ,n; see [3, 2.17 and 4.25].
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2.6. Let R be a ring and let M be an R-module. The complexity cxR(M) of M is the smallest integer r ≥ 0
such that the nth Betti number of M is bounded by a polynomial in n of degree r−1 for all n ≥ 0; see
[4, 3.1].

It follows that cxR(M) = 0 if and only if pdR(M)< ∞, and cxR(M)≤ 1 if and only if M has bounded
Betti numbers. Moreover, if R is a complete intersection, then cxR(M) cannot exceed the codimension
of R; see, for example, [5, 5.6].

2.7. Let R be a ring, M be an R-module, and let n ≥ 1 be an integer. Then M is said to be n-Tor-rigid
provided that the following condition holds: if TorR

i (M,N) = 0 for all i = t + 1, . . . , t + n for some R-
module N and some integer t ≥ 0, then it follows that TorR

i (M,N) = 0 for all i ≥ t +1. The n = 1 case
of this definition is known as the Tor-rigidity [2]: M is said to be Tor-rigid if it is 1-Tor-rigid.

Tor-rigidity is a subtle property, but examples of such modules are abundant in the literature. Here
we record a few examples and refer the reader to [18] for further details and examples.

(i) ([2, 2.2] and [37, Cor. 1]) If R is regular, then each R-module is Tor-rigid.
(ii) ([33, 2.4] and [37, Thm. 3]) If R is a hypersurface, that is a quotient of an unramified regular

local ring, then each R-module that has finite length, or has finite projective dimension, is Tor-
rigid.

(iii) ([42, 1.6]) If R is a complete intersection of codimension c, then each R-module is (c+1)-Tor-
rigid. Therefore, if c = 1, then each R-module is 2-Tor-rigid.

(iv) Let R be a complete intersection ring of positive codimension c such that R̂ = S/(x) for some
unramified regular local ring (S,n) and some S-regular sequence x ⊆ n2 of length c. Each R-
module that has complexity strictly less than c is c-Tor-rigid. Therefore, if c = 2, then each
R-module that has bounded Betti numbers is 2-Tor-rigid; see [14, 6.8].

(v) ([8, Thm. 5(ii)]) If I is a Burch ideal of R, i.e., if mI ̸=m(I : m), then R/I is 2-Tor-rigid.
(vi) ([36, page 316]) If M is nonzero such that depthR(M)≥ 1, then mM is 2-Tor-rigid. □

The key ingredient of our argument is the following result; it allows us to tackle the problem on hand
by using the Tor-rigidity property; see 2.7.

Proposition 2.8. Let R be a local ring, N a nonzero R-module, and let M = Ωn
RN for some n ≥ 1.

Assume there is an R-regular sequence x = x1, . . . ,xn of length n such that x ·Ext1R(N,ΩRN) = 0. Then
there is a short exact sequence of R-modules

(2.8.1) 0 −→ F −→
n⊕

i=0

(
Ωi+n−1

R N
)⊕(n

i )
−→ Ωn−1

R (M/xM)−→ 0,

where F is free. □

The proof of Proposition 2.8 is quite involved, and hence it is deferred to Section 4. Here we record
an important consequence of the proposition which is used later in the sequel.

Corollary 2.9. Let R be a local ring, N a nonzero R-module, and let M = Ωn
RN for some n ≥ 1. Assume

the following conditions hold:
(i) N is (n+1)-Tor-rigid.

(ii) x ·Ext1R(N,ΩRN) = 0 for some R-regular sequence x of length n.

Then it follows that Ωn−1
R (M/xM) is Tor-rigid.

Proof. Note, since N is (n+ 1)-Tor-rigid, it follows that
⊕n

i=0
(
Ωi+n−1

R N
)⊕(n

i ) is Tor-rigid; see 2.7.
Therefore, we conclude by (2.8.1) that Ωn−1

R (M/xM) is Tor-rigid. □

Proposition 2.10. Let R be a local ring, M and N be R-modules, a be a proper ideal of R, and let n ≥ 1.
Assume the following conditions hold:
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(i) M satisfies (S̃n).
(ii) depthR(a,R)≥ n.

(iii) N is locally free on X̃n−1(R).
Then there is a sequence x⊆ a of length n such that x ·Ext1R(N,ΩRN) = 0, and x is both R and M-regular.

Proof. We have, by assumption, that depthR(a,R) = inf{depth(Rp) | p ∈ V(a)} ≥ n; see 2.3(i). Hence,
for each q ∈ V(a), it follows that depth(Rq)≥ n.

Set b = AnnR(Ext1R(N,ΩRN)). If q ∈ V(b), then we have depth(Rq) ≥ n: otherwise, q ∈ X̃n−1(R)
and hence Ext1R(N,ΩRN)q = 0 since N is locally free on X̃n−1(R). Therefore, if q ∈ V(a)∪V(b), then
it follows that depth(Rq)≥ n. Furthermore, if q ∈ V(a)∪V(b), then we have depthRq

(Mq)≥ n since M

satisfies (S̃n) and depth(Rq)≥ n. Consequently, we use 2.3(i) and [7, 1.2.10(c)], and obtain:

(2.10.1) depthR(a∩b,M⊕R) = inf{depthR(a,M⊕R),depthR(b,M⊕R)} ≥ n.

Now, by using (2.10.1), we can choose a sequence x ⊆ a∩b⊆ a of length n, as claimed. □
The next result is known for the case where r = 0; see, for example, [10, 3.4].

Lemma 2.11. Let R be a local ring, A and B be R-modules with A ̸= 0, and let m ≥ 1, r ≥ 0 be integers.
Assume TrΩm

R B is an rth syzygy module. Assume further Ωr
RA is Tor-rigid. If ExtmR (B,A) = 0, then it

follows that ExtmR (B,R) = 0.

Proof. Assume ExtmR (B,A) = 0, and consider the four term exact sequence that follows from [3, 2.8(b)]:

TorR
2 (TrΩ

m
R B,A)→ ExtmR (B,R)⊗R A → ExtmR (B,A)→ TorR

1 (TrΩ
m
R B,A)→ 0.(2.11.1)

Note that, as ExtmR (B,A) vanishes, so does TorR
1 (TrΩm

R B,A) by (2.11.1). Also, due to the hypothesis, it
follows that TrΩm

R B∼=Ωr
RX for some R-module X . So, since TorR

1 (TrΩm
R B,A)∼=TorR

1 (X ,Ωr
RA) and Ωr

RA
is Tor-rigid, we conclude that TorR

2 (TrΩm
R B,A) = 0. Hence, as A ̸= 0, (2.11.1) implies the claim. □

3. MAIN RESULT AND ITS COROLLARIES

In this section we prove the main result of this paper, namely Theorem 3.3. Prior to that, we note
that Question 1.3 is true in case the ring in question is a complete intersection of codimension c and the
integer n considered equals c; this fact has been explained to us by Shunsuke Takagi.

3.1. Let R be a ring such that R = S/(x) for some local ring (S,n) and some S-regular sequence x ⊆ n
of length c. Assume the depth inequality depthS(b,N)≤ depthS(b,S) holds for each ideal b of S and for
each S-module N. Let M be an R-module and let a be an ideal of R. Then a= b/(x) for some ideal b of S.
Now, it follows depthR(a,M) = depthS(b,M)≤ depthS(b,S) = depthS(b,R)+c = depthR(a,R)+c. □

Recall that each module is Tor-rigid over a regular local ring; see 2.7(i). Therefore, we obtain:

3.2. Let R be a complete intersection ring of codimension c, M be an R-module, and let a be an ideal of
R. Then it follows from Theorem 1.1 and 3.1 that depthR(a,M)≤ depthR(a,R)+c. Note that this depth
inequality is sharp; see Example 1.2. □

Next we state and prove Theorem 3.3. We should note that the case where n = 0 of the theorem is
nothing but Theorem 1.1. In other words, Theorem 3.3 yields an extension of Theorem 1.1.

Theorem 3.3. Let R be a local ring, N be an R-module, and let a be an ideal of R. Set M = Ωn
RN for

some integer n ≥ 0 and m = depthR(a,R). Assume the following conditions hold:
(i) M ̸= 0 and m ≥ n.

(ii) N is (n+1)-Tor-rigid.
If n ≥ 1, we further assume:

(iii) N is locally free on X̃n−1(R).
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(iv) TrΩm
R (R/a) is an (n−1)st syzygy module.

Then it follows that depthR(a,M)≤ m+n.

Proof. Note that there is nothing to prove if a = 0, or a = R, or depthR(a,M) ≤ n; see 2.3. Note also
that the case where n = 0 follows from Theorem 1.1. Hence we may assume a is a proper ideal and
depthR(a,M)> n ≥ 1.

As M is an nth syzygy module, we see that M satisfies (S̃n); see 2.5(ii). Therefore, since N is locally
free on X̃n−1(R) and depthR(a,R)≥ n, it follows from Proposition 2.10 that there exists a sequence x⊆ a
of length n which is both R and M-regular and x ·Ext1R(N,ΩR(N)) = 0. Now, as N is (n+1)-Tor-rigid,
Corollary 2.9 shows that Ωn−1

R (M/xM) is Tor-rigid.
Let h= depthR(a,M/xM) and suppose h>m. Then it follows that ExtmR (R/a,M/xM)= 0; see 2.3(ii).

Now, letting A = M/xM, B = R/a and r = n−1, we conclude from Lemma 2.11 that ExtmR (R/a,R) = 0.
This yields a contradiction since m = depthR(a,R); see 2.3(ii). Therefore, we have that h ≤ m. This
establishes the required inequality since h = depthR(a,M)−n; see 2.3(iii). □

Next we proceed to obtain several consequences of Theorem 3.3. First we separate the case where
n = 1, which is nothing but Theorem 1.4 advertised in the introduction:

Corollary 3.4. Let R be a local ring, and let a be an ideal of R such that depthR(a,R)≥ 1. Set M =ΩRN
for some R-module N, where N is 2-Tor-rigid and generically free. If M ̸= 0, then it follows that
depthR(a,M)≤ depthR(a,R)+1. □

Corollary 3.5. Let R be a local complete intersection ring of codimension c such that R̂ = S/(x) for
some unramified regular ring (S,n) and some S-regular sequence x ⊆ n2 of length c, where c ≤ 2. Let
M be a nonzero R-module, and let a be an ideal of R. Assume M is generically free and torsion-free.
Assume further M has bounded Betti numbers. Then it follows that depthR(a,M)≤ depthR(a,R)+1.

Proof. Note that, as R is Cohen-Macaulay, M is generically free and torsion-free, we have that M ∼=ΩRN
for some R-module N. Since M has bounded Betti numbers, so does N. Hence it follows that N is 2-
Tor-rigid; see 2.7(iv). Furthermore, N is generically free because M is generically free. Thus the result
follows from Corollary 3.4. □
Corollary 3.6. Let R be a local ring and let a be an ideal of R such that depthR(a,R) ≥ 1. Let N be
a nonzero R-module such that N is generically free and depthR(N) ≥ 1. If M = ΩR(mN) ̸= 0, then it
follows that depthR(a,M)≤ depthR(a,R)+1.

Proof. Note that we may assume R is not Artinian. Hence, mN is generically free. Moreover, mN is
2-Tor-rigid; see 2.7(iv). Therefore, the claim follows from Corollary 3.4. □
Corollary 3.7. Let R be a local ring, a be an ideal of R and let b is a Burch ideal of R. Assume
depthR(a,R)≥ 1 and depthR(b,R)≥ 1. Then it follows that depthR(a,b)≤ depthR(a,R)+1.

Proof. Note that b = ΩRN, where N = R/b is 2-Tor-rigid; see 2.7(v). Moreover, N is generically free
since depthR(b,R)≥ 1; see 2.3(i). Hence, the result follows from Corollary 3.4. □

It is known that integrally closed ideals are Burch over local rings that have positive depth; see [19,
2.2 (3) and (4)]. Therefore, Corollary 3.7 yields:

Corollary 3.8. Let R be a local ring, and let a and b be ideals of R. Assume depthR(a,R) ≥ 1 and
depthR(b,R)≥ 1. If b is integrally closed, then it follows that depthR(a,b)≤ depthR(a,R)+1. □

In the following corollaries, we show that condition (iv) of Theorem 3.3 holds if a is a Cohen-
Macaulay ideal, i.e., R/a is a Cohen-Macaulay ring.

Corollary 3.9. Let R be a Gorenstein local ring, N be an R-module, and let a be an ideal of R. Set
M = Ωn

RN for some integer n ≥ 1 and m = depthR(a,R). Assume the following conditions hold:
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(i) a is a Cohen-Macaulay ideal.
(ii) M ̸= 0 and m ≥ n.

(iii) N is locally free on X̃n−1(R).
(iv) N is (n+1)-Tor-rigid.

Then it follows that depthR(a,M)≤ m+n.

Proof. Note that, as R/a is a Cohen-Macaulay ring, it follows depth(R/a) = dim(R)−m, and also
ExtiR(R/a,R) = 0 for i ̸= m by the local duality theorem; see [7, 3.5.8]. Therefore, TrΩm

R (R/a) is an
(n−1)st syzygy module since ExtiR(R/a,R) = 0 for all i = m+1, . . . ,m+n−1; see 2.5(i). Now, since
all the hypotheses of Theorem 3.3 hold, the required depth inequality follows from Theorem 3.3. □

The next corollary corroborates Corollary 3.5:

Corollary 3.10. Let R be a local complete intersection ring of codimension c such that R̂ = S/(x) for
some unramified regular ring (S,n) and some S-regular sequence x ⊆ n2 of length c, where c ≥ 2. Let
M be a nonzero R-module, and let a be an ideal of R. Assume the following hold:

(i) a is a Cohen-Macaulay ideal such that depth(a,R)≥ c−1.
(ii) cxR(M)< c.

(iii) M satisfies (S̃c−1).
(iv) M is locally free on X̃c−2(R).

Then it follows that depthR(a,M)≤ depthR(a,R)+ c−1.

Proof. Note that, by 2.5(iii), we have M = Ωc−1
R N for some R-module N, where ExtiR(N,R) = 0 for all

i = 1, . . . ,c−1. Let p∈ X̃c−2(R). Then, since M is locally free on X̃c−2(R), it follows pdRp
(Np)≤ c−1.

As ExtiR(N,R) = 0 for all i = 1, . . . ,c−1, we conclude that Np is free. This shows that N is locally free
on X̃c−2(R). Furthemore, as cxR(N) = cxR(M)< c, it follows that N is c-Tor-rigid; see 2.7(iv). Hence
the result follows from Corollary 3.9 by setting n = c−1. □

Remark 3.11. Let us note that, if c = 2 in Corollary 3.10, then the Cohen-Macaulay assumption on
the ideal a is not needed due to Corollary 3.5. Moreover, the assumption cxR(M)< c in Corollary 3.10
implies the vanishing of the eta function if R is an isolated singularity; in this case M would be a c-
Tor-rigid module; see [14, 6.3 and 6.8]. In the appendix we recall the definition of the eta function and
discuss some of its applications that are related to our results.

4. PROOF OF PROPOSITION 2.8

In this section we prove Proposition 2.8. For its proof we need some basic facts which we recall next
for the convenience of the reader; see, for example, [38, 1.2, 1.4 and 3.2].

4.1. Let R be a ring, x∈R and let A, B and C be R-modules. Set σ =(0→A
f→B

g→C → 0)∈Ext1R(C,A).

(i) The connecting homomorphism HomR(C,C)→ Ext1R(C,A) is given by the rule γ 7→ E, where
E = (0 → A → Z → C → 0) is the short exact sequence obtained by the following pull-back
diagram:

0 // A
f

// B
g

//

PB

C // 0

0 // A // Z //

OO

C //

γ

OO

0
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(ii) The multiplication homomorphism A x→ A induces a homomorphism Ext1R(C,A) x→ Ext1R(C,A)
which sends σ to σ ′, where σ ′ = (0 → A →W →C → 0) is the short exact sequence obtained
by the following push-out diagram:

0 // A
f

//

x
��

PO

B
g

//

��

C // 0

0 // A //

��

W //

��

C // 0

A/xA

��

A/xA

��

0 0

Therefore, it follows that σ ′ ∈ x ·Ext1R(C,A).
Moreover, the diagram above induces the following commutative diagram where the leftmost

square is a pushout square:

0 // ΩRA //

x
��

PO

ΩRB //

��

ΩRC // 0

0 // ΩRA // ΩRW // ΩRC // 0

Therefore, it follows that the bottom short exact sequence 0 → ΩRA → ΩRW → ΩRC → 0
belongs to x ·Ext1R(ΩRC,ΩRA).

(iii) The multiplication homomorphism C x→C induces a homomorphism Ext1R(C,A) x→ Ext1R(C,A)
which sends σ to σ ′′, where σ ′′ = (0 → A →V →C → 0) is the short exact sequence obtained
by the following pull-back diagram:

0 0

C/xC

OO

C/xC

OO

0 // A
f

// B
g

//

OO

PB

C //

OO

0

0 // A // V //

OO

C //

x

OO

0

Therefore, it follows that σ ′′ ∈ x ·Ext1R(C,A).

Lemma 4.2. Let R be a ring, x ∈ R and let N be an R-module. Then the following are equivalent.

(i) The multiplication map N x−→ N factors through a free R-module.
(ii) x ·ExtiR(N,−) = 0 for each i ≥ 1.

(iii) x ·Ext1R(N,ΩRN) = 0.
Furthermore, if one of these equivalent conditions holds and x is a non zero-divisor on N, then there

is an isomorphism ΩR(N/xN)∼= N ⊕ΩRN.

Proof. Note that the implication (ii) ⇒ (iii) is trivial. Hence we show (i) ⇒ (ii) and (iii) ⇒ (i).
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To establish (i) ⇒ (ii), we assume N x−→ N factors through a free R-module F , i.e., there exist

R-module homomorphisms f and g such that N
f−→ F

g−→ N, where g f = x · 1N . Now let X be an
R-module and n ≥ 1 be an integer. Then f and g induce R-module homomorphisms f ∗ and g∗ such that

ExtnR(N,X)
g∗−→ ExtnR(F,X)

f ∗−→ ExtnR(N,X), where f ∗g∗ = x · 1ExtnR(N,X). As ExtnR(F,X) vanishes, we
conclude that f ∗g∗ = 0, i.e., x ·ExtnR(N,X) = 0. This proves the implication (i) ⇒ (ii).

Next consider the syzygy exact sequence E = (0 → ΩRN → G
p−→ N → 0), where G is free. This

induces the exact sequence 0 → HomR(N,ΩRN) → HomR(N,G)
p∗−→ HomR(N,N) → Ext1R(N,ΩRN).

Note that 1N 7→ E under the connecting homomorphism HomR(N,N)→ Ext1R(N,ΩRN); see 4.1(i). So
the image of the map N x−→ N under the connecting homomorphism belongs to x ·Ext1R(N,ΩRN).

Now assume x ·Ext1R(N,ΩRN) = 0. Then the multiplication map N x−→ N is in im(p∗), and hence it
factors through the free module G. Consequently, (iii) ⇒ (i) follows.

Next assume x is a non zero-divisor on N. Then we consider the multiplication map N x→ N and
make use of 4.1(iii) with the exact sequence E, and obtain short exact sequences of R-modules:

E1 = (0 →V → G → N/xN → 0) and E2 = (0 → ΩRN →V → N → 0) ∈ x ·Ext1R(N,ΩRN) = 0.

Now E2 splits so that E1 yields the isomorphism ΩR(N/xN)∼=V ∼= N ⊕ΩRN, as required. □
Next we use Lemma 4.2 and give a proof of Proposition 2.8. We also need the following fact:

4.3. Let R be a local ring and let 0 → A → B → C → 0 be a short exact sequence of R-modules. Then
there is a short exact sequence 0 → ΩRC → A⊕H → B → 0, where H is a free R-module; see, for
example, [21, 2.2]. Therefore, if A is free, then ΩRC ∼= ΩRB.

Proof of Proposition 2.8. Note that, since x is R-regular and M is an nth syzygy module, we see that x
is also M-regular; see 2.5(ii). We proceed by induction on n. First assume n = 1.

As in the proof of Lemma 4.2, we look at the syzygy exact sequence E = (0 → ΩRN → F → N → 0),
where F is free. Then, by using the multiplication map M

x1→ M and 4.1(ii), we obtain short exact
sequences of R-modules of the form

E1 = (0 → F →W → M/xM → 0) and E2 = (0 → ΩRN →W → N → 0) ∈ x1 ·Ext1R(N,ΩRN) = 0.

Now E2 splits, and hence E1 yields the required short exact sequence.
Next we assume n > 1, and set N′ = N⊕ΩRN, M′ = Ωn−1

R N′ ∼= Ωn−1
R N⊕Ωn

RN, and x′ = x1, . . . ,xn−1.
Note that it follows:

(2.8.2) Ext1R(N
′,ΩRN′) = Ext1R(N,ΩRN)⊕Ext1R(N,Ω2

RN)⊕Ext2R(N,ΩRN)⊕Ext2R(N,Ω2
RN).

As x ·Ext1R(N,ΩRN) = 0, we see from Lemma 4.2 that x ·ExtiR(N,−) = 0 for all i ≥ 1. Therefore, by
(2.8.2), we conclude that x, and hence x′ annihilates the module Ext1R(N

′,ΩRN′). Thus the following
short exact sequence exists due to the induction hypothesis:

0 → F ′ →
n−1⊕
i=0

Ωi+n−2
R (N′)

⊕
(

n−1
i

)
→ Ωn−2

R (M′/x′M′)→ 0,(2.8.3)

where F ′ is a free R-module. Furthermore, as M′ = Ωn−1
R N′, we use 4.3 along with (2.8.3) and obtain:

Ωn−1
R (M′/x′M′)∼=

n−1⊕
i=0

Ωi
R(M

′)
⊕
(

n−1
i

)
(2.8.4)

Recall that M = Ωn
RN. Hence there is a short exact sequence 0 → M → F → Ωn−1

R N → 0 for some
free R-module F . It follows, since x′ is R-regular, that x′ is Ωn−1

R N-regular; see 2.5(ii). So we have a
short exact sequence of the form:

0 → M/x′M α−→ F/x′F → Ωn−1
R N/x′Ωn−1

R N → 0.
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We take the pushout of α and the injective map M/x′M xn−→ M/x′M, and obtain the following commu-
tative diagram:

0

��

0

��

0 // M/x′M α //

xn

��

PO

F/x′F //

��

Ωn−1
R (N)/x′Ωn−1

R (N) // 0

0 // M/x′M //

��

W //

��

Ωn−1
R (N)/x′Ωn−1

R (N) // 0

M/xM

��

M/xM

��

0 0

(2.8.5)

Note that the short exact sequence 0 → Ωn−1
R (M/x′M)→ Ωn−1

R W → Ωn−1
R

(
Ωn−1

R N/x′Ωn−1
R N

)
→ 0 be-

longs to xn ·Ext1(Ωn−1
R

(
Ωn−1

R N/x′Ωn−1
R N

)
,Ωn−1

R (M/x′M)); see (2.8.5) and 4.1(ii).
Next note that we have the following isomorphisms:

(2.8.6) Ext1R(Ω
n−1
R (M′/x′M′),−)∼=

n−1⊕
i=0

Exti+1
R (M′,−)

⊕
(

n−1
i

)
∼=

2n⊕
i=n

ExtiR(N,−)⊕r(i),

where r(i) is a positive integer depending on i. The first isomorphism in (2.8.6) is due to (2.8.4), while
the second one follows from the fact that M′ ∼= Ωn−1

R N ⊕Ωn
RN.

Recall that Ωn−1
R N is a direct summand of M′. Therefore, Ωn−1

R

(
Ωn−1

R N/x′Ωn−1
R N

)
is a direct sum-

mand of Ωn−1
R (M′/x′M′). This implies, in view of (2.8.6), that Ext1(Ωn−1

R

(
Ωn−1

R N/x′Ωn−1
R N

)
,−) is

a direct summand of
⊕2n

i=n ExtiR(N,−)⊕r(i). It follows, since x · ExtiR(N,−) = 0 for all i ≥ 1, that
xn annihilates each direct summand of ExtiR(N,−) for each i ≥ 1; in particular, we conclude that
xn ·Ext1R(Ω

n−1
R

(
Ωn−1

R N/x′Ωn−1
R N

)
,Ωn−1

R (M/x′M)) = 0. This implies that the bottom short exact se-
quence in (2.8.5) splits so that we have the following isomorphism:

(2.8.7) Ωn−1
R W ∼= Ωn−1

R (M/x′M)⊕Ωn−1
R
(
Ωn−1

R N/x′Ωn−1
R N

)
.

Recall that, by (2.8.5), we have a short exact sequence 0 → F/x′F →W → M/xM → 0. Hence, by
taking syzygy and using (2.8.7), we obtain the exact sequence:

(2.8.8) 0 → Ωn−1
R (F/x′F)→ Ωn−1

R (M/x′M)⊕Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N)→ Ωn−1

R (M/xM)→ 0.

The minimal free resolution F• of F/x′F is of the form 0 → F → F⊕n−1 → ··· → F⊕n−1 → F → 0
since Hi(F•⊗R K(x′;R)) = TorR

i (F,R/x′R) = 0 for all i ≥ 0, where K(x′;R) is the Koszul complex of R
with respect to x′. Therefore, it follows that:

(2.8.9) Ωn−1
R (F/x′F)∼= F.



AN EXTENSION OF A DEPTH INEQUALITY OF AUSLANDER 11

We have the following isomorphisms about the middle module in the short exact sequence (2.8.8):

Ωn−1
R (M/x′M)⊕Ωn−1

R
(
Ωn−1

R N/x′Ωn−1
R N

)∼= Ωn−1
R (M′/x′M′)

∼=
n−1⊕
i=0

Ωi
R(M

′)
⊕
(

n−1
i

)

∼=
n−1⊕
i=0

(
Ωi+n−1

R N ⊕Ωi+n
R N

)⊕(n−1
i

)

∼=

[
n−1⊕
i=0

(
Ωi+n−1

R N
)⊕(n−1

i

)]⊕[
n⊕

i=1

(
Ωi+n−1

R N
)⊕(n−1

i−1

)]
(2.8.10)

∼=

[(
Ωn−1

R N
)⊕(n

0)
]⊕[

n−1⊕
i=1

(
Ωi+n−1

R N
)⊕(n

i )
]⊕[(

Ω2n−1
R N

)⊕(n
n)
]

∼=
n⊕

i=0

(
Ωi+n−1

R N
)⊕(n

i ).

In (2.8.10), the first and the third isomorphisms follow since M′ ∼= Ωn−1
R N ⊕Ωn

RN = Ωn−1
R N ⊕M, while

the second isomorphism is nothing but (2.8.4). The other isomorphisms are elementary.
Now, in view of (2.8.9) and (2.8.10), we conclude that the short exact sequence in (2.8.8) is the

required one. This completes the induction argument and hence the proof of the proposition. □

We end this section with a consequence of Proposition 2.8 which corroborates [29, 2.1] and [45, 2.2].

Corollary 4.4. Let R be a local ring, N a nonzero R-module, and let M = Ωn
RN for some n ≥ 1. Assume

there is an R-regular sequence x = x1, . . . ,xn of length n such that x · Ext1R(N,ΩRN) = 0. Then the
following isomorphism holds:

(4.4.1) Ωn
R(M/xM)∼=

n⊕
i=0

Ωi
R(M)⊕(

n
i )

Proof. It follows from Proposition 2.8 that we have the following short exact sequence:

0 −→ F −→
n⊕

i=0

(
Ωi+n−1

R N
)⊕(n

i )
−→ Ωn−1

R (M/xM)−→ 0,

where M = Ωn
RN. Therefore 4.3 yields the short exact sequence

0 −→ ΩR
(
Ωn−1

R (M/xM)
)
−→ F ⊕G −→

n⊕
i=0

(
Ωi+n−1

R N
)⊕(n

i )
−→ 0,

where G is a free R-module. Hence, we conclude that:

Ωn
R(M/xM)∼= ΩR

(
n⊕

i=0

(
Ωi+n−1

R N
))⊕(n

i )
∼=

n⊕
i=0

(
Ωi+n

R N
)⊕(n

i ) ∼=
n⊕

i=0

Ωi
R(M)⊕(

n
i ).

□

APPENDIX A. ON TOR-RIGID MODULES OVER COMPLETE INTERSECTION RINGS

It is known that a module of finite projective dimension over a local ring is not necessarily Tor-rigid;
see [27]. On the other hand, if the ring considered is a hypersurface that is quotient of an unramified
regular local ring, then each R-module that has finite projective dimension turns out to be Tor-rigid;
see 2.7(ii). This result was generalized by Dao by using the theta function θ R(−,−); more precisely,
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Dao proved that, if R is a hypersurface as before and M and N are R-modules such that θ R(M,N) = 0,
then the pair (M,N) is Tor-rigid, where θ R(M,N) = lengthR(TorR

2n(M,N))− lengthR(TorR
2n−1(M,N))

for n ≫ 0; see [15, 2.1] for the details. It should be noted that this function has been initially defined by
Hochster [32] to study the direct summand conjecture, which is now a theorem [1].

The theta function is a natural extension of Serre’s intersection multiplicity and it has been proved to
be a very useful tool to study Tor-rigidity and other subtle problems. For example, Gabber [24] conjec-
tured that the Picard group of the punctured spectrum of a complete intersection ring of dimension three
is torsion-free; see also [13]. Dao [16] proved Gabber’s aforementioned conjecture for the hypersurface
case by using techniques that rely upon the usage of the theta function. More on the history, conjectures,
applications, and results concerning the theta function can be found in the survey article [18] and also
in [11, 17, 20, 40, 41, 46].

In this section we obtain another generalization of the fact that modules of finite projective dimension
are Tor-rigid over hypersurfaces. We observe that modules that are eventually periodic of odd period
are Tor-rigid over hypersurfaces that are quotient of unramified regular local rings. In fact, we show that
such periodic modules are c-Tor-rigid over complete intersections of codimension c; see A.4. In partic-
ular, we conclude that modules that are eventually periodic of odd period satisfy the depth inequality of
Theorem 1.1; see A.5.

The main tool we use in this section is the eta function ηR(−,−) introduced by Dao [14]. We
recall its definition next but first let us note that the eta function is an extension of the theta function
discussed previously. In fact, the eta function equals, under some mild conditions, to Serre’s intersection
multiplicity over regular rings, to two times the theta function over hypersurface rings, and to a constant
factor of a notion of Gulliksen over complete intersection rings; see [14, 4.4] for the details. We also
refer the interested reader to [9] for a function which is defined in terms of the Ext functor and which is
analogous to the eta function.

Throughout, R denotes a local complete intersection ring such that the m-adic completion R̂ of R is
of the form S/(x) for some unramified (or equi-characteristic) regular ring (S,n) and some S-regular
sequence x ⊆ n2 of length c, where c ≥ 1. Note that this setup does not necessarily imply that R itself
can be expressed as such a quotient; see [28].

A.1. ([14, 4.2, 4.3(1), 5.4]; see also [9, 3.3]) Let M and N be R-modules such that TorR
i (M,N) has

finite length for all i ≫ 0. Set f = inf{s : lengthR(TorR
i (M,N))< ∞ for all i ≥ s}. Then the eta function

ηR(M,N) is defined as follows:

ηR(M,N) = lim
n→∞

n

∑
i= f

(−1)i lengthR(TorR
i (M,N))

nc

In the following we collect some properties of the eta function:

A.2. Let M and N be R-modules.

(i) If ηR(M,N) = 0, then the pair (M,N) is c-Tor-rigid; see 2.7 and [14, 6.3]. For example, if c = 1
and R is a simple hypersurface singularity of even dimension, then it follows that ηR(M,N) = 0
for all R-modules M and N so that each module is Tor-rigid over R; see [14, 4.4] and [17, 3.16].

(ii) The eta function is additive whenever it is defined. Namely, if 0 → M′ → M → M′′ → 0 is a
short exact sequence of R-modules such that TorR

i (M
′,N) and TorR

i (M
′′,N) have finite length

for all i ≫ 0, then it follows that ηR(M,N) = ηR(M′,N)+ηR(M′′,N); see [14, 4.3(2)]. □

We proceed to observe that modules that are eventually periodic of odd period are c-Tor-rigid over R.
Note that this property is not true for eventually periodic modules of even period; when c = 1, modules
over R are eventually periodic of period two [22], but they are not necessarily Tor-rigid, in general.
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A.3. Let N be an R-module such that N is eventually periodic of odd period, i.e., Ωn
RN ∼= Ωn+q

R N for
some odd integer q and for all n ≫ 0. If X is an R-module and TorR

i (N,X) has finite length for all i ≫ 0,
then the pair (N,X) is c-Tor-rigid over R.

To see this, first note that ηR(N,X) is well-defined; see A.2. Moreover, for n ≫ 0, the following
equalities hold:

ηR(N,X) = (−1)n ηR(Ωn
RN,X)

= (−1)n ηR(Ωn+q
R N,X)

= (−1)n(−1)n+q ηR(N,X)

=−ηR(N,X).

Here, the first and third equalities are due to A.2(ii), while the second one follows by the hypothesis.
Consequently, we conclude ηR(N,X) = 0, and this implies that the pair (N,X) is c-Tor-rigid; see A.2(i).

A.4. Let N be an R-module such that Ωn
RN ∼= Ωn+q

R N for some odd integer q and for all n ≫ 0. Then it
follows that N is c-Tor-rigid.

To see this, let X be an R-module with TorR
1 (N,X) = · · ·= TorR

c (N,X) = 0. We set r = dimR(N⊗R X)
and proceed by induction on r to show that TorR

i (N,X) = 0 for all i ≥ 1.
If r ≤ 0, then the claim follows from A.3. So we assume r ≥ 1, and pick p ∈ SuppR(N ⊗R X) such

that p ̸=m. Note that Ωn
Rp

Np
∼= Ωn+q

Rp
Np for all n ≫ 0. Then it follows by the induction hypothesis that

TorR
i (N,X)p = 0 for all i ≥ 1. This shows that TorR

i (N,X) has finite length for all i ≥ 1. Hence, by A.3,
the pair (N,X) is c-Tor-rigid over R. Thus, as TorR

1 (N,X) = · · · = TorR
c (N,X) = 0, we conclude that

TorR
i (N,X) vanishes for each i ≥ 1, as claimed.

A.5. Let R be a hypersurface ring, a be an ideal of R, and let N be an R-module.
(i) Let N be an R-module which is eventually periodic of odd period. Then N is necessarily even-

tually periodic of period one as it is already eventually periodic of period two. Then it follows
that N is Tor-rigid and hence depthR(a,N)≤ depthR(a,R); see Theorem 1.1 and A.4.

(ii) If ΩRN ∼= M⊕ΩRM for some R-module M, then it follows from part (i) that N is Tor-rigid over
R and hence depthR(a,N)≤ depthR(a,R): this is because M is eventually periodic of period at
most two [22] and hence N is eventually periodic of period one. □

If R is hypersurface, then it is clear that modules of the form M ⊕ΩRM are Tor-rigid over R; see
2.7(ii). On the other hand, the fact that modules as in A.5(ii) are Tor-rigid over R seems interesting to
us since a module over a hypersurface ring need not be Tor-rigid in general, even if its syzygy module
is Tor-rigid.

APPENDIX B. AN EXAMPLE ABOUT TOR-RIGIDITY

In this section we give an example of a ring and modules that do not satisfy the hypotheses of
Theorem 1.4. Let us note that the ring we construct is a four-dimensional local domain that is not
Cohen-Macaulay.

Example B.1. Let k be an algebraically closed field, R = k[x1,x2,x3]/(x3
1 + x3

2 + x3
3), and let S =

k[y1,y2,y3]. Then R and S are standard graded rings of dimension 2 and 3, respectively. Moreover,
both R and S are Cohen-Macaulay.

Let T =R#S =
⊕

n≥0 Rn⊗k Sn, the Segre product of R and S, which is a subring of R⊗k S. Then T is a
graded normal domain; see [25, Remark 4.0.3(v)]. Set M = R(1)#S, where R(1) is the graded shift of R
by one, that is, R(1)n = Rn+1 for each n ≥ 0. Then it follows that dim(T ) = 4 and depth(T ) = 2; see [25,
4.1.5 and 4.2.3] (note depth is computed here for the graded ring by using local cohomology in view of
the fact that the a-invariants of R and S are 0 and −3, respectively). Then we see from [25, 4.4.13] that
M is a small (that is, finitely generated) maximal Cohen-Macaulay T -module, i.e. depthT (M) = 4.
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Set f = x3
1 + x3

2 + x3
3 ∈ k[x1,x2,x3]. Then one can check that

T ∼=
(

k[x1,x2,x3]#k[y1,y2,y3]
)
/( f ⊗ k[y1,y2,y3]3)

∼= k[xiy j | 1 ≤ i, j ≤ 3]/( f y3
1, f y2

1y2, f y2
1y3, f y1y2

2, f y1y2y3, f y1y2
3, f y3

2, f y2
2y3, f y2y2

3, f y3
3)

Note, as R(1)=Rx1+Rx2+Rx3, it follows that M = T x1+T x2+T x3. So y1M = Ty1x1+Ty1x2+Ty1x3,
and hence there is an injective map M → T given by multiplication by y1 as y1x1, y1x2, and y1x3 are
elements of T . This implies that M ∼= y1M and M is isomorphic to an ideal of T . Therefore M is a
torsion-free T -module so that M ∼= ΩT (N) for some T -module N.

Next we consider the complete local ring T̂ , which is obtained by taking the completion of T at its
graded maximal ideal T+. Note that dim(T̂ ) = 4, depth(T̂ ) = 2, M̂ ∼= ΩT̂ (N̂), and M̂ is a small maximal
Cohen-Macaulay T̂ -module. Note also that, since M is generically free over T , we deduce that M̂ is
generically free over T̂ . Moreover, if a is the maximal ideal of T̂ , then we have

depthT̂ (a,M̂) = 4 > 3 = depthT̂ (a, T̂ )+1.

Therefore we conclude from Theorem 1.1 that M̂ is not Tor-rigid over T̂ , and conclude from Theorem
1.4 that N̂ is not 2-Tor-rigid over T̂ ; see also Theorem 3.3.

Next we give an explicit description of T , M and N.
Note that k[xiy j | 1 ≤ i, j ≤ 3]∼= k[zi j | 1 ≤ i, j ≤ 3]/I. Here the isomorphism is given by xiy j ↔ zi j,

and I is the ideal generated by 2-minors of the matrix
( z11 z12 z13

z21 z22 z23
z31 z32 z33

)
. Therefore

T ∼= k[zi j | 1 ≤ i, j ≤ 3]/J,

where J is the ideal generated by

z3
11 + z3

21 + z3
31, z2

11z12 + z2
21z22 + z2

31z32, z2
11z13 + z2

21z23 + z2
31z33, z11z2

12 + z21z2
22 + z31z2

32,

z11z12z13 + z21z22z23 + z31z32z33, z11z2
13 + z21z2

23 + z31z2
33, z3

12 + z3
22 + z3

32, z2
12z13 + z2

22z23 + z2
32z33,

z12z2
13 + z22z2

23 + z32z2
33, z3

13 + z3
23 + z3

33, z11z22 − z21z12, z11z23 − z21z13, z12z23 − z22z13,

z11z32 − z31z12, z11z33 − z31z13, z12z33 − z32z13, z21z32 − z31z22, z21z33 − z31z23, z22z33 − z32z23.

Note that the T -module M is given by a presentation

T⊕15 A−→ T⊕3 → M → 0,

where A can be computed by Macaulay2 [26] as follows:(
z23 z22 z21 z13 z12 z11 0 0 0 z2

33 z32z33 z31z33 z2
32 z31z32 z2

31
−z33 −z32 −z31 0 0 0 z13 z12 z11 z2

23 z22z23 z21z23 z2
22 z21z22 z2

21
0 0 0 −z33 −z32 −z31 −z23 −z22 −z21 z2

13 z12z13 z11z13 z2
12 z11z12 z2

11

)
.

Similarly N is given by a presentation

T⊕3 B−→ T⊕3 → N → 0,

where B can be computed by Macaulay2 [26] as follows:( z33 z23 z13
z32 z22 z12
z31 z21 z11

)
.
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